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Dynamic Origin-Destination Demand
Estimation with Multiday Link Traffic
Counts for Planning Applications

Xuesong Zhou, Xiao Qin, and Hani S. Mahmassani

A dynamic origin—destination demand estimation model for planning
applications with real-time link counts from multiple days is presented.
Based on an iterative bilevel estimation framework, the upper-level prob-
lem is to minimize both the deviation between estimated link flows and
real-time link counts and the deviation between estimated time-dependent
demand and given historical static demand. These two types of deviations
are combined into a weighted objective function, where the weighting
value is determined by an interactive approach to obtain the best com-
promise solution. The single-day formulation is further extended to use
link counts from multiple days to estimate the variation in traffic demand
over multiple days. A case study based on the Irvine test bed network is
conducted to illustrate the methodology and estimate day-to-day demand
patterns. The application illustrates considerable benefits in analyzing the
demand dynamics with multiday data.

The deployment of intelligent transportation systems (ITS) offers con-
siderable opportunity to acquire vast amounts of real-time traffic data
that can contribute to improved understanding of traffic dynamic
processes as well as a richer basis for the management of transporta-
tion systems. Specifically, real-time traffic link counts (or occupancies
obtained from loop detectors or other sensors) can be an important data
source to estimate time-dependent origin—destination (O-D) travel
demand. In the last two decades, significant progress has been made
on the dynamic O-D estimation problem with real-time link counts.
Early research (/) proposed methods to estimate time-dependent
demand on individual components such as a single intersection or
afreeway corridor. Estimators for dynamic O-D demand in a general
network using a simplified assignment model were proposed by
Cascetta et al. (2). Growing interest in the application of simulation-
based dynamic traffic assignment (DTA) models has been accompa-
nied by research into the estimation of dynamic O-D matrices. A recent
approach uses a bilevel generalized least-squares optimization frame-
work (3, 4) for this problem, while seeking to maintain internal con-
sistency of the demand-dependent link-flow proportions between the
upper-level demand estimation problem and the lower-level DTA
problem. Extensive literature review of the dynamic O-D demand
estimation problem and its inherent connection to DTA can be found
elsewhere (4, 5).

Most existing procedures for dynamic O-D estimation focus on real-
time applications, where computational considerations often limit the
choice of methodology (6-8). In contrast, the dynamic O-D demand
estimation problem in the transportation planning context has not
received adequate attention, even though the time-dependent O-D
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demand matrix is a key input for successful application of DTA in
planning practice. The requirements of planning applications for
dynamic O-D estimation are different from those of real-time
operational applications.

First, the primary concern in planning applications is to improve
the final quality of O-D demand tables through effective utilization of
multiple sources of information. These include any available histori-
cal static derpand matrix, coupled with real-time traffic data (e.g., link
counts, observed travel time) as well as the planners’ knowledge. Fur-
thermore, the O-D demand estimation problem in planning appli-
cations usually deals with a large-scale urban network that may have
thousands of links and hundreds of traffic analysis zones. Most impor-
tantly, real-time traffic information may be available only on a subset
of links in the study network, which increases the difficulty in infer-
ring the dynamic O-D demand table for all the O-D pairs. Effective
utilization of real-time data together with other information sources
to estimate reliable time-dependent O-D demand is an important and
challenging problem in current planning practice.

On the other hand, once installed, loop detectors can record multi-
ple days of link counts continuously at minimal additional cost, thereby
providing the opportunity to estimate the day-to-day demand varia-
tions in a cost-effective way. The day-to-day variability in demand is
an important consideration for certain demand management policies
(e.g., high-occupancy vehicle pricing) and traffic management (e.g.,
signal control), and an O-D demand matrix considering day-to-day
uncertainty is an essential input for stochastic dynamic traffic assign-
ment (9). Previous research has relied on survey data (/0), which might
suffer from low response rates and attrition due to the extended survey
horizon (necessary to obtain multiday responses). Another possible
information source is use of Global Positioning System (GPS) devices
(possibly embedded in a mobile phone) to track and record the com-
plete travel data for sampled individuals (/7). However, current
equipment cost for network level deployment would likely be too high.

In this paper, a dynamic O-D estimation model that explicitly con-
siders the historical static O-D demand matrix is proposed, and then
several possible strategies for ensuring that the problem is identifi-
able are discussed. The next section focuses on the estimation of day-
to-day demand variations by using multiday link counts as well as
the related hypothesis testing. Finally, a case study is presented with
real-time link counts on the Irvine network.

MODEL WITH ONE-DAY OBSERVATIONS
Model Framework

The model presented here is an extension of the iterative bilevel esti-
mation framework proposed by Tavana and Mahmassani (3). Specif-
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ically, the upper-level problem is a constrained ordinary least-squares
problem, which is to estimate the dynamic O-D demand based on
given link-flow proportions. The link-flow proportions in turn are
generated from the dynamic traffic network loading problem at the
lower level, which is solved by a DTA simulation program—namely,
DYNASMART-P (12). :

The following notation is used to represent all the variables in the
demand estimation formulation. In this section, the concern is only
with demand estimation using one-day link counts, so the subscript
of day m is dropped for simplicity.

h = subscript for the observation intervals, during which
the traffic volume is accumulated and reported,
h=1,...,H

H = number of observation time intervals in estimation
period.

= subscript for links with traffic flow measurements,
I=1,...,L :

L = number of links in the network that have flow mea-
surements.

t = subscript for aggregated departure time intervals,
t=1,...,T.

T = number of aggregated departure time intervals in
estimation period.

i = subscript for origin zone, i=1, ..., L
I = number of origin zones in network.
J = subscript for destination zone, j=1,...,J.

J = number of destination zones in network.
m = subscript for day of week.

M = number of days of week, m=1,..., M. In this
paper, MM = 5, representing Monday through
Friday.

Cum,m = measured traffic volume on link /, during observation
interval h, on day m.
C,, = vector of measured flows on the links, consisting of
element ¢4, m.
dij,.m = demand volume with destination in zone j, originat-
ing their trip at zone i during aggregated departure
interval ¢ on day m.
D,, = vector of O-D demand flows, consisting of elements
d.ij),m on day m.
Pun.uijpm = link-flow proportions—that is, proportion of demand
flow ), » that flows onto link / during observation
interval h.
P,, = matrix of link-flow proportions, consisting of ele-
ment pa,. gijy,me
€4, m = combined error terms in estimation of traffic flow on
link / during observation interval 4 on day m.
E,, = vector of combined error terms, consisting of elements
€un,m for link flow.
&a.j = target demand, which is the total traffic demand
during period of interest for each O-D pair (i, j).

G = target demand vector, which is a vector of total
traffic demand during period of interest, consisting
of elements g ;.

N.j)» = combined error terms in estimation of total traffic
demand during period of interest from zone i to zone
j onday m.

A = mapping matrix between time-dependent demand

and total demand.
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I1,, = vector of combined error terms, consisting of ele-
ments T, j,  for total traffic demand during period of
interest.

Two objectives are considered in this formulation. The first one is
to minimize the deviation between observed link flows and estimated
link flows, as indicated in Equations 1a and 15. The second objective
is to minimize the deviation between the target demand and estimated
demand. Suppose the target demand is a historical static demand table
for the entire study horizon, so the second objective function can be
explicitly written as the difference between the static demand and
the sum of dynamic demand over the study period, as indicated in
Equations 24 and 2b.

C=PxD+E (1a)

or

Cum = z Pumin@uin * €an (1b)
i

G=AxD+I1 (2a)

or

8(i. ) = 3, duiy + My (2b)

From a multiobjective programming standpoint, the preceding
biobjective programming problem can be transformed into a single-
objective problem by either a weighting formulation or an e-constraint
formulation. The former leads to a relatively simple quadratic pro-
gramming problem, which coincides with an ordinary linear regres-
sion model, while the latter introduces hard nonlinear constraints
if the deviation is represented by the squared error. The weighted
formulation is adopted to combine the two sets of deviations, with
respective weights w and (1 — w) for the first and second objectives.
The weights w and (1 — w) could be interpreted as the decision
maker’s relative preference or importance belief for the different
objectives; they could also be considered as the dispersion scales for
the first and second error terms in the ordinary least-squares estimation
procedure. In general, if the provided target demand is not reliable—
that is, the error term 1 ;, has a high variance—a small value of w
is used, and vice versa. The resuiting bilevel dynamic O-D estimation
problem with a single day of link-level observations is presented in
Equations 3 and 4, which is to minimize the combined deviations, sub-
ject to the dynamic traffic assignment constraint and nonnegativity
constraints for demand variables.

. 2
minZ = {(1 - W)z [2 Pumiiy X Gy = C(I.h)]

1k Loij
2
+ WZ [Z dyijy — g(i.j)] } )]
ij t

subject to

Pumip = assignment |d, | from DTA, VI, b, t,i,j

d,.,20 Vt,i,j C))

(nij)y =

where w is a positive weight.



32  Paper No. 03-4340

If a time-dependent demand matrix is available a priori, the preced-
ing formulation can be written as Equation 5, where g; ;, is extended
to g, for each departure time interval:

. ~ 2
minZ = {(1 = W)Z [z Paminin X Guigp = C(un]

Lh i

+ WZ [dein — g(x.i.j)]z} )

rij

A natural attempt would be to split the given static demand g; ; into
equal portions of g, = g/ T for each time interval and use Equa-
tion 4, which has a structure similar to that of the static O-D estima-
tion case. However, this scheme would implicitly impose a uniform
temporal pattern on the target demand, thereby biasing the resulting
estimation. More precisely, defining the combined error term 1, =
dij) = 8.y for each departure time interval gives 1 ;, = 2,,11(,,,-,,,.
The bias for the latter formulation with respect to the previous
formulation for each O-D pair (i, j) is presented in Equation 6.

Z[d(u.j) = Guin) = [2 duip = g(i.j)]2
= Z Neisy = [z T’l(z.i.n]z == 22 2 MeipNaziyy  (6)

2211

The iterative solution algorithm for the proposed bilevel program-
ming problem is briefly described as follows. Detailed discussion can
be found elsewhere (3, 4).

Step 1: initialization; i = 0. Start from an initial guess of the traf-
fic demand matrix D, obtain link-flow proportions P, from the DTA
simulator.

Step 2: optimization. Substituting link-flow proportions P;,
solve the dynamic O-D estimation problem as Equation 3 to obtain
demand D;.

Step 3: simulation. Using demand D,, run the DTA simulator to
generate new link-flow proportions Py,.

Step 4: evaluation. Calculate the deviation between simulated link
flows and observed link counts, and calculate the deviation between
estimated demand D, and target demand.

Step 5: convergence test. If the convergence criterion is satisfied
(estimated demand is stable or no significant improvement in the
overall objective), stop; otherwise i =i + 1 and go to Step 2.

In the following, two key questions are addressed in using the pre-
ceding formulation in planning applications. One question is how to
assess the weight w, and the other is how to deal with estimation with
partial observation.

Retrieving Best Compromise Solution

It may be possible to obtain the least-squares estimate of the weight
value through linear regression (I3). However, in planning analysis,
it is more desirable to incorporate the planners’ knowledge and expe-
rience in the estimation process, reflecting different degrees of confi-
dence in the different sources of information. Furthermore, planners
might like to adjust their preferences progressively as they develop a
better understanding of the problem. For these reasons, an interactive
approach is presented to determine the weight for the preceding bi-
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objective problem, consisting of the following two steps. A repre-
sentative subset of nondominated solutions is first generated by vary-
ing the weight, and then the decision maker can determine the weight
that results in the best compromise solution based on the following
three criteria, as commonly used in the multiobjective programming
field.

¢ Minimum combined deviation. This is equivalent to the objec-
tive function value in Equation 3.

¢ Best trade-off. The trade-off measurement can be computed by
0Z,/90Z,, where Z, and Z, are the first and second objectives. Given
two different weights w? and w!, one has the corresponding objective
values Z(w®) = [Z(w°), Z,(w")] and Z(w") = [Z,(w"), Z,(w")], and then
0Z,/9Z, can be numerically approximated from the ratio of change
between the Z, and Z, as indicated in Equation 7. Intuitively, a trade-
off in the O-D estimation problem means how much deviation from
the target demand the decision maker would give up to decrease the
deviation for link counts by one unit.

0z, _ ZWw") -z W) o
0z, ZW%) -z

¢ Minimum distance from the ideal point. Planners can define the
goal f, and £, as the maximum possible deviation for the first and the
second objectives, and then the goals for both objectives make up
an ideal point f* = ( fi, f;) or a utopia point. The best compromise
solution is the one with minimum distance from the ideal point.

Utilizing Limited Real-Time Data

Given a subset of links with real-time link flow observations, a fun-
damental question is how to identify the demand dynamics with lim-
ited information. In particular, the authors are interested in obtaining
a unique solution for the preceding ordinary least-squares formula-
tion. This requires that the number of decision variables (O-D demand
flows) be less than the number of constraints (the number of link obser-
vations plus the number of O-D pairs in the static demand matrix), as
indicated in Inequality 8.

LxH+IxJ2IxJxT (8)

If the given link observations cannot satisfy Inequality 8, then the
O-D estimation turns out to be an underdetermined problem, which
can have numerous multiple solutions. To ensure the identifiability
of the dynamic O-D estimation problem, the following four possible
approaches can be used.

The first simple remedy is to increase the length of departure time
intervals to reduce the number of decision variables, but this aggrega-
tion scheme will undermine the capability of modeling O-D demand
dynamics. The second method is to shorten the length of observation
time intervals to increase the number of observations. However, a short
observation time interval would increase the possibility of linear cor-
relation in the link-flow matrix P, which makes the estimation result
unstable. In fact, to obtgin aunique solution, it is still necessary to ver-
ify the rank condition—that is, the sum of rank for matrices G and
C is greater than the number of variables. Because the coefficient
vectors in matrix G correspond to independent O-D demand, the rank
of matrix A is always I X J. The link-flow proportion vector can be
expressed as Equation 9.
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Pamipy = Z“u,h).wuj)‘I(u) ®

keK(i.j)

where

Ol m, ijy = time-dependent link-path incidence indicator,
dus, = path flow choice probability of selecting path k at the
departing interval ¢, and
K(i, j) = set of paths between origin i and destination j.

Clearly, the path flow choice probability is determined by traffic
assignment, and the link-path incidence is governed by the traffic flow
propagation process. For instance, consider two consecutive short
intervals, #; and #,; it is highly possible that the path flow choice prob-
ability and the time-dependent link-path incidence are unchanged, and
the corresponding two link-flow proportion vectors at t, and 1, are the
same. This implies that one cannot arbitrarily shrink the observa-
tion interval to increase the number of observations, and the redun-
dant information does not increase the chance of making the problem
identifiable.

For a traffic network with partial observations, not all O-D
demand will pass through those links that have flow measurements.
In other words, only those O-D demand flows that have an impact
on the measured flows can be inferred from the observed flows. Based
on the link-flow proportions generated from the network loading
(simulation assignment) result, O-D pairs (i, j) with pgs, ¢ij).m >0
can be denoted as relevant O-D pairs, and those with pg, .5, m =0
can be denoted as irrelevant O-D pairs. Consequently, only relevant
O-D pairs need to enter the O-D estimation problem. However, this
procedure is still an ad hoc technique that highly relies on the qual-
ity of simulated link-flow proportions, and it is still possibie to rule
out actual relevant O-D pairs. Therefore, one should try to esti-
mate the full O-D matrix table as completely as possible in planning
practice.

The fourth approach is to apply the polynomial transformation
(6) presented in Equation 10. In particular, if the degree of the poly-
nomial model V is less than the number of departure intervals T, the
number of total decision variables can be reduced. An advantage of
this method is that it uses fewer decision variables to represent the
dynamics of demand, especially the trend information. However, it
should be noted that a low-order polynomial model may not always
capture the full randomness of demand, and a high-order model
might lead to wild oscillations even if it provides better goodness
of fit.

, .
deijy = ZB&.;)’" )

n=0

where n is the order term and P is the parameter to be estimated.

MULTIDAY (WEEKDAYS) O-D
DEMAND ESTIMATION

Model Specification

The formulation of the O-D demand estimation problem with single-
day link observations is extended to a multiday context. Consid-
ering 5 weekdays, a more extensive model can be expressed as
Equation 11. :
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(1-wCY [U-wB 0 0 0 0
1 -w¢, 0 d-wp 0 0 0
(- wG 0 0 U-wph 0 0
a1 -w)C, 0 0 0 1 -wp, 0
a - wc; 0 0 0 0 (-wn
we | | wa 0 0 0 0
wG 0 wA 0 0 0
wG 0 0 wA 0 0
wG 0 0 0 wA 0
wG i O 0 0 0 wA ]
(1 - wlE,
(1 - w)E,
(1 - wE,
Dy
1 - wE,
D,
(1 - w)E;
x| Dy |+ (1)
wll,
D,
wll,
D
wIl,
wll,
w [l

This formulation is analogous to a multiple linear regression model
that has the standard form as Equation 12. From the multiple linear
regression point of view, Y represents dependent variables, (X, X, X3
X4 X;) are independent variables, (D, D, D; D, Ds)T are coefficients to
be estimated, and ‘¥ represents error terms.

Y= X X X, X,)x| D, [ +¥ 12)

Three possible assumptions about D,, that lead to different forms
for Equation 12 are considered.

The first is that the O-D demand matrices D, on different days
are different. Accordingly, link-flow proportions—that is, X,,’s in
Equation 12—would also have different values.

The second situation corresponds to identical D,, on different
days. Thus, link-flow proportions over different days would be gen-
erated identically from the DTA simulation, and Equation 12 can be
collapsed to the simple form presented in Equation 13.

D,
Dy
Y=(X X Xo Xo Xo) x| Dy |+ ¥ 13)
Dy
D,
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However, this assumption D,, is likely to be too stringent for the
real-world traffic demand. To recognize the inherent stochasticity of
traffic demand, the third assumption views the multiday O-D demand
as the outcome of a common underlying random process with mean
D, and variance ep—that is, D,, = D, + €p. In this way, Equation 12
can be simplified to Equation 14.

Y=(X X X X, X)x|D, |+¥ (14)

where ¥’ is the combined error for ¥ and €p.

The preceding multiday O-D estimation problem can still be solved
by the bilevel ordinary least-squares method used for single-day esti-
mation described previously. Its mathematical formulation consists of
objective Function 15 and Constraint 16. Note that the objective is to
minimize multiday discrepancies, and the link-flow proportions are
obtained from the DTA simulator individually for different demand
matrices.

R - 2
obj. minZ = Z{(l - W)Z I:z Pumiim X Quijm = C(I.h}.m]
m Lk

i

+ WZ [Z diijrm = g(i,n]z} (15)

subject to
dyijm 20 YVt i, j,m
Pumipn = assignment|d, ] from DTA

Yihtijm (16)

Analysis of Day-to-Day Variability
Hypotheses for D,

To identify day-to-day variability of O-D demand, two potential mod-
els are assumed. The null hypothesis (H,) for D,, is that the means of
multiday demand are identical, corresponding to a reduced model.
The alternative hypothesis (H,) for D,, is that the means of multiday
demand patterns are different, corresponding to a full model.

Hy:D,, = D,,
H:D, # D,,

for m, # m,

for m, # m,

Standard F-Test

Statistical testing is performed to compare means across multiple
days. The F-statistic tests the null hypothesis that the multiple means
of O-D demands across all days are equal. If the computed F-statistic
value is greater than the corresponding critical value (for the desired
significance level), then the null hypothesis can be rejected, and
the multiday mean O-D demands may be considered significantly
different from one another.

_ (SSEsuees = SSEw)/(k — &)
SSEuu/In — k + 1]

amn
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where

n = number of observations,
k = number of restrictions causing change of the full model
to the reduced model,
g+ 1 = number of coefficients in the reduced model, and
.SSE = sum of square errors, which is calculated according to
Equation 18.

SSE = Z {(l - W)Z [2 Pamijpm X dA(l.i.j),m - C(l.h).ln]z

m Lh i j
+ wz [Z diipm = g("'i)]z}
iJ ’

- Y ssE, | as)

It is worth noting that the variables (X, X, X, X,, X;) in this study
would have different values in the full model and the reduced model
because of the inherent dependency of link-flow proportions and
O-D traffic demand matrices.

Full Model Calibration

Based on the structure of the model (Equation 12), the procedure for
full model calibration is equivalent to performing individual model
calibration for each day. After five estimated O-D demand matrices
are obtained individually—that is (D, Dy, D3, D., ﬁs)——they just
need to be substituted in Equation 18 to compute SSEq.

Reduced Model Calibration

The following procedure is adopted to calibrate the reduced model:

Step 1: Compute average the D and variance 63 of the esti-
mated O-D demand (D,, D,, Ds, D,, Ds) obtained from the full model
calibration.

Step 2: Randomly generate O-D demand on five days (D, Dy, Ds,
D,, Ds) based on the average D and the variance 6.

Step 3: Obtain five link-flow proportions matrices (P, £, Py, B,
f"s) th‘rou_gh DTA simulation, given the randomly generated (D, D,
D5, Dy, Ds). .

Step 4: Substitute (P}, P,, Py, Py, Ps) into Formulation 18 to esti-
mate a common demand matrix D, for all days. Then, the estimated
Dy is taken as a new average value used for randomization in Step 2.
If D, is stable, stop and the estimated D, in this step is the optimal
one. Otherwise, go back to Step 2 and repeat the process.

Finally, SSE,.s.cca Can be computed based on the optimal O-D
demand D,.

CASE STUDY

In this section, the proposed model and algorithm are tested by using
a simplified road network of the Irvine, California, test bed, which
consists of three freeway corridors (I-5, 1405, Highway 133) and
other main arterials. As indicated in Figure 1, the simplified network
includes 16 O-D zones, 31 nodes, and 80 links (32 freeways and
48 arterials), where traffic counts are measured on 16 links at 30-s
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FIGURE 1 Irvine simplified network.

intervals on 10 freeway links and at S-min intervals on 6 arterial
links. In addition, a static planning O-D demand table is given and
used as the target demand g; ;. The time of interest in the following
experiments is the morning peak period (6:30 to 8:30 a.m.) of four
weekdays (Tuesday to Friday). It would have been ideal to investi-
gate the O-D demand variability over 5 weekdays, but the data for
Monday could not be used in the estimation because of poor quality
(due to sensor malfunction). Simulation is performed for 3 h (6:00 to
9:00 a.m.). To gain more reliable estimation results, the starting period
from 6:00 to 6:30 is used as a warm-up period. Moreover, the ending
period from 8:30 to 9:00 is not considered in the statistics, because a
large number of vehicles departing after 8:30 would not have finished
their trips, resulting in incomplete link-flow proportions.

Weighting Scheme in Upper-Level Optimization

Before conducting the O-D estimation, one first wants to determine
the appropriate weighting value in the weighted objective function.
With the data for Tuesday, 10 different values of w between 0 and 1
are used to generate a representative set of nondominated solutions,
as presented in Figure 2. For w =0 (i.e., O-D estimation without tar-
get demand), the resulting deviation from the target demand is 2.42 x
108, which is too large to be shown in the plot. As expected, greater
weight on the target demand can result in smaller deviation from the
target demand but larger deviation from the link flows. Interestingly,
the rate of change for the second objective is much more dramatic than
for the first objective, and the total weighted deviation is governed by
the deviation from the target demand. In addition, w = 1 minimizes
the deviation from the target demand, actually yielding an overail
deviation of zero, because the target demand can always be a feasible
solution. In contrast, for w = 0 (i.e., only the deviations of link flows
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A link with abservation

16

are considered), the solution does not perfectly fit all the link counts.
The three criteria discussed earlier for determining a best compromise
solution are examined here to determine the appropriate weighting
value. First, the minimum combined deviation condition is not suit-
able in this case, because w = 1 always provides the best result but
does not consider the link flows. It is easy to check that w = 0.9 cor-
responds to the “best” trade-off, but the absolute deviation for the link
counts is still very high. The ideal point is presented in Figure 3, where
the goals for the first and second objectives are set to 2.00 x 10% and
0, respectively. The plot reveals that the solutions corresponding to
weights of 0.2 and 0.5 are very close to the ideal point. In this study,
w = 0.5 is used because this provides better trade-offs.

Day-to-Day O-D Demand Patterns

The estimated demand patterns for three O-D pairs are presented in
Figures 4 to 6. In particular, the selected O-D pairs (12, 1), (16, 1), and
(16, 4) are representative O-D pairs with the highest trip demand. In
Figure 4, the estimated dynamic demand on different days is consis-
tent with the magnitude of the historical static demand. As expected,
all three O-D pairs show significant within-day dynamics. Particularly,
O-D pair (12, 1) corresponds to a siow increasing trend, and O-D pairs
(16, 1) and (16, 4) have similar peak patterns: the peak occurs around
7:15 a.m., and the height of the peak is 20% to 30% above the mini-
mal demand level during the 2 h. Note that the latter two O-D pairs
start from the same origin Zone 16, so they are more likely to have
common departure time patterns. Moreover, the dynamic demand pat-
tern can be verified by the observed link flows as indicated in Figure 7,
observed versus simulated link flows for Link 1. The reason for
selecting Link 1 (presented in Figure 1) is that it carries the demand
flow for O-D pair (16, 1). It is easy to see that the time of flow
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FIGURE 2 Representative set of nondominated solution generated by weighted method.
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FIGURE 5 Estimated trip demand patterns for O-D pair (16, 1).
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peak is relatively later than the time of demand peak, which is around
7:15 to 7:45 a.m., due to the traffic flow propagation. Furthermore, on
Link 1, the simulated flows match the observed flows quite well.

Based on the estimated results, all three O-D pairs exhibit different
patterns of day-to-day variation. In general, O-D pair (12, 1) exhibits
greater variation in terms of the time of peak, O-D pair (16, 1) shows
greater variation in terms of the height of peak, while O-D pair (16, 4)
exhibits much more stable patterns. This information is useful to help
the transportation manager alleviate congestion by redistributing
demand flow spatially and temporally on the network.

Hypothesis Testing for Mean of Demand

As indicated in Equation 17, the sum of squared errors SSE for esti-
mation (say, the total objective value) is required for computation of
the F-statistic. Calibration of the full model and the reduced model
provide the value of SSE without additional effort. The results are
SSEqy = 4.90 x 106 for the full model and SSE .4,ceq = 5.55 X 106 for
the reduced model. In addition, during 2 h (or 120 min) and for 16 x
16 — 16 = 240 O-D pairs, the number of observations n= (120 x 2 x
10+ 120/5 x 6 + 240) x 4 = 11,136. The number of restrictions from
the full model to the reduced model is k = 120/15 x 240 x 3 = 5,760.
The number of coefficients in the reduced model is g + 1 =120/15 x
240 =1,920. The significance level a is set to 0.05. Therefore, the
F-statistic is calculated as follows:

= (SSEmduced — SSEfull)/(k - g)
SSEq /In — (e + DI

= 0.186

Comparing this value with the critical value, Fy ;g p+1y=1.10, the
null hypothesis that the restriction is valid stands, indicating that the
mean O-D demand pattern for the network is essentially identical
across multiple days.

Because link-flow proportions are generated by simulation instead
of known a priori, performing an F-test for the model specification
in this example should be viewed as approximate and interpreted
with caution. Furthermore, O-D demands might not be independent
of each other, so the conclusion from the F-statistic again should be
interpreted with considerable caution.

CONCLUSION

Time-dependent O-D demand matrices are a critical input to dynamic
traffic assignment methodology in real-time operational and planning
applications. This paper introduces and highlights the potential of
using multiple sources of information to estimate the dynamic O-D
demand for planning applications. The particular sources available
here include the historical static information and ITS real-time link-
level information. First, a bilevel iterative dynamic O-D estimation
model is extended to combine both deviation between estimated link
flows and real-time link counts and deviation between estimated time-
dependent demand and given historical static demand. The two objec-
tives are combined by using a weighted function, where the weighting
value is determined by an interactive approach to obtain the best com-
promise solution. In particular, the trade-offs among several methods
that are designed to use limited real-time information to infer the
demand dynamics are discussed. The model was extended to use the
multiple days of link counts to estimate the variations in traffic demand
over multiple days. The case study based on the Irvine network illus-
trates that valuable information about traffic demand dynamics can be
estimated with multiday data.
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Future research in dynamic O-D demand estimation for planning
applications includes using other ITS information sources such as
automatic vehicle identification and GPS as well as other static infor-
mation such as peak hour counts and daily counts. It is also desirable
to use multiple weeks of data in demand estimation and integrate with
a dlsaggregate analysis for day-to-day demand dynamics to improve
the final quality of O-D estimation.
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