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Dynamic'Programming Approach for Online
Freeway Flow Propagation Adjustment

Xuesong Zhou and Hani S. Mahmassani

An optimization framework for online flow propagation adjustment
in a ffeeway context was proposed. Instead of performing local adjust-
ment for individual links separately, the proposed framework consid-
ers the interconnectivity of links in a traffic network. In particular,
dynamic behavior in the mesoscopic simulation is approximated by
the finite-difference method at a macroscopic level. The proposed
model seeks to minimize the deviation between simulated density and
anticipated density. By taking advantage of the serial structure of a
freeway, an efficient dynamic programming algorithm has been devel-
oped and tested. The experiment results compared with analytic results
as the base case showed the superior performance of dynamic pro-
gramming methods over the classical proportion control method. The

. effect of varying update intervals was also examined. The simulation
results suggest that a greedy method considering the impact of incon-
sistency propagation achieves the best trade-off in terms of computa-
tion effort and solution quality.

Real-time dynamic traffic assignment (RT-DTA) systems are de-
signed to evaluate alternative traffic control actions and provide
information supply strategies by utilizing real-time traffic surveillance
data. The internal traffic network representation (for example, a traf-
fic simulation model) embedded in RT-DTA systems serves as a
basis for evaluating the effectiveness of different management deci-
sions. To ensure the reliability of such an evaluation, the RT-DTA
system requires an important external supporting module to ensure
the consistency between actual observations and the estimated state
of a traffic network.

In the RT-DTA system (DYNASMART-X) presented by
Mahmassani (/, pp. 104-135), a consistency-checking function
was introduced to reduce the deviations between the selected state
measures on each link. Doan et al. (2) proposed a more general
framework for online monitoring systems in a traffic network. The
following are potential sources of error in online traffic manage-
ment applications: demand estimation, path estimation, traffic
propagation, internal traffic model structure, and online observa-
tion. Accordingly, the online adjustment system can be divided
into two major components, namely, a demand and path adjust-
ment component and a traffic propagation adjustment component,
which may be viewed as long-term and short-term update proce-
dures, respectively. Doan et al. (2) also applied the proportion-
integral-derivative (PID) control method, a classical rule-based
technique in the process control field, in their proposed online
monitoring system. The PID adjustment method seeks to restore
local consistency of each link quickly but does not directly take
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advantage of information on interconnected links. However, in
some implementations, it may be possible to indirectly reflect global
coordination through the determination of nominal values that
serve as a basis for local control. In fact, through transfer of flow
across links, the control action applied to a given link could sig-
nificantly affect consistency errors, and hence the required adjust-
ment, on downstream links. Therefore, local adjustment without
consideration of upstream and downstream interconnection may
not be effective globally. Similarly, an error on a link (e.g.. incon-
sistency between actual and estimated link density) might propa-
gate to other links and increase in magnitude after certain time
intervals. The systematic control of error propagation requires
development and application of reliable online traffic propagation
adjustment procedures.

This study is concened with the development of an online traffic
propagation adjustment approach designed to update the flow repre-
sentation of a mesoscopic (MESO) simulator in a freeway corridor
context. The approach consists of a global optimization framework
and a corresponding efficient solution algorithm. After the back-
ground on traffic flow models involved in the online flow adjustment
module, the optimization framework and related modeling issues are
discussed. Next a dynamic programming approach for solving the
online flow propagation adjustment problem in a corridor context is
described. Finally, the performance of proposed methods is evaluated
on the basis of a test case.

BACKGROUND

Here the traffic flow models, as well as the corresponding numerical
computation schemes, that are involved in the model presented in the
next section are introduced. Depending on the level of representation
detail, traffic flow models have been categorized as macroscopic,
mesoscopic, or microscopic. The most notable macroscopic model is
the first-order model developed by Lighthill and Whitham (3) and
Richards (4). In the first-order model, traffic flow can be described
by three basic equations: the fundamental equation, the conservation
equation, and the speed-concentration equation. The conservation
equation can be derived from an analogy between traffic flow and a
one-dimensional compressible fluid:

q= kv (1)
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where g, k, and v are flow, density, and speed, respectively, and g(.)
is the net vehicle generation rate.
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A commonly used form for the speed-concentration relation
specified in the first-order model is that of Greenshields:
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where

V; = free-flow speed,
K; = so-called jam concentration, and
o = coefficient with a typical value of 1.

Instead of using a static speed-density relation in the first-order
model, Payne (5) proposed a higher-order continuum model, intended
to capture the mean speed dynamics in traffic flow. It should be
noted that the performance of second- and higher-order models com-
pared with that of first-order models remains a subject of debate in
the traffic science community.

The foregoing models describe traffic flow as a one-dimensional
compressible fluid with partial differential equations (PDEs). Because
it is difficult to obtain analytic solutions for these PDEs, many
researchers have presented various finite-difference approximations
to solve these equations numerically. The general procedure of the
finite-difference methods includes two steps. First, time is discretized
into small equal intervals and the highway facility is discretized into
sections. After an initialization of traffic demand for a given simula-
tion horizon, variables are updated according to a given speed-density
relation. In addition, the macroscopic model needs to consider capac-
ity constraints between two consecutive sections. A recent numerical
study for different finite-difference schemes has been described by
Zhang and Wu (6).

As part of a dynamic analysis framework to investigate the
effect of commuter decisions, Chang et al. (7) developed a MESO
model, adapted from an approach used in plasma physics, that rep-
resents traffic flow as discrete vehicle groups, or macroparticles.
This model updates the movement of vehicles on the basis of pre-
vailing local speeds determined according to a relation between
average speed and concentration prevailing in a discrete segment.
In contrast, microscopic models offer a more complicated repre-
sentation by considering stimuli and responses among individual
particles. Among the better-known microscopic models is the
car-following model proposed by Gazis et al. (8).

From a numerical computation standpoint, MESO models can be
treated as mixed or hybrid models that combine elements of macro-
scopic and microscopic models. In other words, individual vehicle
positions in the MESO mode! are updated according to macroscopic
fiow measurements. Usually, a modified Greenshields equation is
specified to ensure that vehicles under the jam concentration still can
move forward. Moreover, the supply constraints in MESO models
are considered in the following two ways. First, a capacity constraint
ensures that the computed flow rate is less than a given maximal
flow rate. Second, a physical available space constraint keeps the
resulting density below the physically maximal density.

In general, a suitable traffic flow model in the simulator of an
RT-DTA system should achieve a balance between data require-
ments and model accuracy. With a similar data collection effort to
that of the first-order macroscopic model, the MESO model offers
the added capability of keeping track of vehicle-related information,
such as departure time and path. Although microscopic models
allow more detailed representations of various driver behaviors,
they require an onerous calibration effort. Since the MESO model
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meets the dual requirement of simple calibration and adequate rep-
resentation, it has been integrated into major simulation-assignment-
based DTA systems, such as the DYNASMART system proposed
by Jayakrishnan et al. (9), as well as into later systems, such as
DynaMIT (10).

ONLINE ADJUSTMENT FRAMEWORK FOR
FREEWAY SECTIONS

In an RT-DTA system, the flow propagation adjustment module
needs to continuously update the internal traffic flow representation
to approximate real-world observations. Essentially, the internal
traffic simulator can be viewed as a dynamic system consisting of
a set of interacting units. From an optimal control standpoint, the
online traffic propagation problem is to choose the control variable
vector over a traffic network such that the state of internal flow rep-
resentation is transformed from a given system state to a desired sys-
tem state at certain time 7. Consequently, the principal elements for
establishing an online flow propagation optimal adjustment model
are as follows: (a) the state variables and control variables of inter-
nal flow representation, (b) the transfer function describing the flow
dynamic behavior on interconnected links, and (c) the performance
index or criterion used to specify the desired state.

System Characterization

The system under study consists of several consecutive freeway links
in a corridor. To capture traffic flow dynamics, the physical links are
subdivided into smaller sections or segments. For simplicity, on-
ramp and off-ramp volumes are not considered in the following illus-
tration, with no loss of generality. The following assumptions are
made: (a) the necessary surveillance data in terms of speed, density,
and flow on each section are available at each observation time
point, and there are no online observation errors coming into the
online flow adjustment modules; (b) the origin—destination demand
and paths are assumed to be known and fixed during each online
fiow adjustment interval; and (c) the simulation time interval in the
built-in simulator and the observation time interval are equal. Typ-
ically, the observation time interval might be equal to or greater than
the simulation interval. For instance, the simulation interval used in
DYNASMART is 6 s, and observation time intervals may vary from
several seconds to several minutes depending on the specific moni-
toring devices. The reason for making the third assumption is to sim-
plify the system design by applying a synchronous horizon for the
different modules.

To introduce the notation and variables used in the formulation, the
sections are numbered from 1 to J, and the simulation time step is
denoted as 1, r=1, ..., T. The simulated vehicles travel from Sec-
tion 1 to Section J; At is the length of the simulation interval, and Ax
is the section length; K;,, V;, are the prevailing density and mean speed
in Section j during the zth time step, and Q;, is the transfer flow rate
from Section j to Section j + 1 during the rth time interval [z, # + At].

For Section j in a traffic simulator, the internal state vector is (K, Q,
V). There aré two important flow rates, the inflow Q;_,,  from the
upstream section and the outfiow (;, to the downstream section. The
speed of vehicles moving on a section V;, is the control variable avail-
able to manipulate the system state. As suggested in by Doan et al. (2),
the performance index of each section is measured in terms of the den-
sity K;,. Moreover, perturbations to the simulation system are due to
unobserved characteristics and randomness in actual traffic flow.
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Constraints

The following constraints in the optimization model are intended to
describe the dynamic behavior of the simulation state of the MESO
model. It is noted that the MESO model can be considered as a
finite-difference form of the fundamental equation (Equation 1) and
the conservation equation (Equation 2). Thus, it reasonabie to apply
finite-difference equations directly to represent the internal flow
updating procedure in the MESO simulator. It should be noted that
the constraints below do not incorporate the speed-concentration
equation (Equation 3), since the speed value in the current model is
determined by the optimization solution rather than by the equilib-
rium condition. Although there are other approaches to describe the
dynamics of a MESO simulator, such as the time series technique,
the finite-difference form seems to provide the most straightforward
representation,

First, Equations 4 and 5 describe the corresponding finite-
difference form for PDEs (Equations 1 and 2). In addition, Expres-
sion 6 is used to model the supply constraint in the MESO model, as
mentioned earlier.

M

id

=K.V, )
where M, is the vehicle flow ready to move from Section j to
Section j + I during the rth simulation time interval.

Kj.n-l = Kj.: + (Qj-l.l - Q)J)At/Ax (5)

Qj.l = min{Mj.lv C/*IJ’ S,.|_,} (6)

where C. . is the inflow capacity, and S, , is the maximal inflow
rate allowed by the available space on the downstream Section j + 1
during the th time interval.

Since the MESO model keeps track of all vehicle positions, avail-
able inflow space in Expression 6 can be calculated as the dis-
tance from the position of the last vehicle to the end of the section.
Furthermore, S;., , can be obtained as the maximal inflow value pro-
ducing maximum density in the available space. By introducing a
constraint on the available physical space, this formulation ensures
that the first-in-first-out property is adhered to in the vehicle propaga-
tion, which is a critical requirement in the modeling of DTA systems.
If intersection control elements are included in the simulator, the
finite-difference form of the link outfiow constraint can be established
in a similar manner.

Equations 3 through 6 depict the dynamic model of simulated
flow on each section. In addition, to make sure that the control vari-
able V;, is bounded by the admissible control region, Equation 7
must be considered:

i SV 0
It should be noted that the physical bounds for density and flow rate
are implicitly satisfied by Expression 6.

Objective Function

In the previous section, the important variables were identified and
the required constraints (i.e., the transfer function) were defined for

the optimal adjustment model. Next the selection of an appropriate
performance index, that is, the objective function in the mathemat-
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ical model, is discussed. The optimization problem seeks to mini-
mize the difference between the real-world traffic states and the
internal state representation in the simulator over a given time hori-
zon. Using density as the state variable, the objective function can
be expressed as the deviation of actual traffic density and simulated
density at some given time points in the future. However, the Sys-
tem at the current adjustment step (time step ¢) does not have the
actual traffic density measure for the next time step (¢ + 1), so a nat-
ural way is to use an anticipated value given the current real-world
observation at time ¢. To simplify the problem, only a one-step pre-
diction is used as the desired state; that is, the decision horizon is
equal to the observation time interval. Under the above-mentioned
assumption that the simulation and observation time intervals are
equal, the performance index can be specified as follows:

P = zl(wlej,n-l - K;.1+|l) (8)

where w; is the weighting factor of Section j, and K., is the
anticipated density on Section j at time step ¢ + 1.

The introduction of the weight w; in the objective function allows
the decision maker to assign different importance levels to different
sections during the adjustment. In recognition of the fact that incon-
sistencies may propagate and amplify as traffic flows downstream
from a given section, it is desirable to reduce the inconsistency as
close as possible to the source. In a freeway, which has a clear
sequential structure, the weight of an upstream section could be set
to a larger value than the corresponding weight on downstream sec-
tions. A simple heuristic rule to generate these weights so as to favor
upstream sections is

wy=J+1-] ®

In Equation 8, the anticipated density K /,., can be calculated by
a macroscopic traffic flow model, which will involve the numerical
approximation of PDEs with finite-difference functions. In this
paper, only the simple center difference scheme is applied.

DYNAMIC PROGRAMMING
SOLUTION ALGORITHM

Because the optimization problem under study has a special sequen-
tial structure, with serial sections along a corridor, it offers a natural
application for dynamic programming in a real-time computation
setting. The forward-recursive optimization function in the dynamic
programming algorithm is expressed as follows:

fy(Q;.n V/f) = minv,-, [f?—l(Qj-l.n Vj—l.l) + P(Qj—l,lv V/—i.l)] (10)

where f ’,‘.‘(Q,;,, V,.) is the minimum cost obtainable from Section 1
to Section j, given outflow Q;, and adjustment speed V;, for Sec-
tion j at time step ¢, and P(Q;.,, t, V;-,, £) is the performance index
specified in Expression 8 in terms of flow rate and speed. The
boundary condition is f*(Q,, V;) = 0, for all feasible V; satisfying
Inequality 7, where Q , is the (assumed) known inflow rate on
Section 1.’ .

The optimal solution is the adjustment speed vector over a series
of sections, given the inflow rates on the first section. Since the
inflow rates Q;, are continuous variables, they are discretized into
different discrete levels corresponding to a finite set of states in

dynamic programming.



266  Paper No. 02-3420

The dynamic programming algorithm can be expressed in a stage-
wise manner. The steps of the proposed algorithm are as follows:

Step 1. Initialize all the cost vectors:

Set f*1(Q;., V) = 0 for j = 1, and set f*(Q;,, V,,) = e from Sec-
tion 2 to Section J at current time step t, where Q;, is the inflow
level, which ranges between 1 and the maximal flow rate Q.

Read the given initial traffic demand on Section 1.

Step 2. For each Section j = 1 to J, do the following:

Generate the predicted density of Section j from the real-world
observation at time step 7. '

For each arrival level g =1, . . ., Oy, do the following:

For each speed level v=1, .. ., V,do the following:

Update the departure flow rate and density measure using
Equations 4 and 5.

Compute the available space flow rate S;, with given v.

Check the supply constraint (Expression 6) on Section j; if
the constraint is not satisfied, update the current cost function
Y@ Vi) =eo.

Apply the simulated density and the predicted density values
into Expression 8, and use the recursive function (Equation 10)
to update the best minimal function value f;’.‘(Q,.,, V, ) foragiven
inflow rate on Section j.

EndFor
EndFor

EndFor
Step 3. Find a global optimal decision for all V;, on Section J, which

is the minimal value f ’}.*(Qj,,, V) with j=J. Then search the sequence
of adjustment speeds by backtracking the cost function value from
the last Section J. ’

It should be noted that the computation of the supply constraint
(Equation 8) for Section j requires values for C;+ 1, r and S,., , cor-
responding to the next Section j+ 1. This expression might invalidate
the sequential structure in the dynamic programming approach. To
handle this difficulty, the equation can be removed from the con-
straint set and included as a penaity term in the objective function.
This change means that the corresponding constraint checking is per-
formed for Section j + 1. In other words, if this expression is not sat-
isfied, the cost function is set to an infinitely large vaiue. Through this
approach, the proposed model] retains a clear dynamic programming
solution algorithm.

The complexity of the foregoing algorithm is O | Oyl |V,| )
where iQm lis the number of transfer fiow levels and |Vf|is the num-
ber of possible speed levels. The typical values of |Q,,,/and ,Vf jcan
be 2,200 and 60, respectively. Therefore, even though the algorithm
might be easy to implement, its computational requirements may be
considerable. A possible approach to reduce the computation cost is
to reduce the number of transfer flow levels and speed levels by intro-
ducing a coarser discretization scale, such as using only 100 levels
for O and 20 levels for V.

As mentioned earlier, the weight w; assigned to upstream sections
can be set to a very high level. A simple approach for carrying out
this idea is to compute only the best scheme using the best objective
function value (minimal inconsistency) from the previous section
rather than to evaluate all the possible schemes (Q, V). Thus the new
return function could be expressed as follows:

f();) = minQJ-l'vl.l['f*(j - l) + P(Qi—l.n Vj-l.l)] an

where f*( ) is the minimum cost obtainable for Section 1 to Section
J, with a corresponding sequence of outflow Q*;., and adjustment
speed V7, for Section 1 to j at time step 7.
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The corresponding algorithm can be modified as indicated below.
There are now only two loops for each section and for each speed
level, so the complexity of the heuristic algorithm reduces to O(JIV!).
This approach can be viewed as a greedy algorithm because it only
processes the best result from the last section. The modification
steps are as follows:

Step 1. Initialize all the cost vectors:

Set f ;'.‘(Q,-,,, V,..) = oo from Section 1 to Section I at current time
step ¢, where Q;, is the inflow level between 1 and Q,,,.

Read the given initial traffic demand on Section 1. -
Step 2. For each Section j = 1 to J do the following:

Generate the predicted density of Section j from the real-world
observation at time step ¢.

Read the inflow rate Q% ~ 1, r with respect to the f(j — 1) obtained
from last Section 1 and do the following:

For each speed level v=1, .. ., V,do the following:

Update the departure flow rate and density measure using
Equations 4 and 5.

Compute the available space flow rate S;, with given v.

Check the supply constraint (Equation 6) on Section j; if the
constraint is not satisfied, update the current cost function with
speed v as infinite. Apply the simulated density and the predicted
density values into Expression 8 and use the recursive function
(Equation 11) to update the minimal cost function value f*( j)
for all possible V;, on Section j.

EndFor
EndFor
Step 3. Select f*(/) as the final solution. Then obtain the sequence
of adjustment speeds by backtracking the cost function value from
the last Section J.

NUMERICAL EXPERIMENTS

Numerical experiments are designed to evaluate the foregoing online
flow propagation adjustment approach by comparing the results
with those of an analytical base case. The analytical base case is
used in preference to a simulated base case because it was desired
to test the influence of the finite-difference equations used in the
optimization model. If simulation results are used as a base case, the
true performance of the finite-difference approximation will be diffi-
cult to identify. In the current study, a shock wave situation is tested on
a2.5-mi, three-lane pipeline freeway with five sections (Ax = 0.5 mi).
The traffic demand at the first upstream section is uniformly dis-
tributed with 1,462.5 vehicles per hour per lane. With a free-flow
speed of 60 mph and jam density of 160 vehicles/mi, the initial den-
sity is 30 vehicles/mi. In the last downstream section, the capacity is
reduced to a certain level (emulating an incident situation), creating a
bottieneck with a density of 90 vehicles/lane-mi, which remains over
the whole study horizon. The simulation time interval and observa-
tion time interval are set to 6 s. The propagation speed of the shock
wave is determined as follows (17):

W= (M] (12)
K,-K,

where W is the shock wave speed in miles per hour, and the sub-
scripts u and d indicate the upstream and downstream regions of the
shock wave.

The following discussion focuses on the performance of different
online adjustment approaches. Consistency in an online context can



Zhou and Mahmassani

Paper No. 02-3420 267

—t—p =1

—%—p =5
e real-world

0
c
&
3
E
@
2
L2
=
[]
2
=
®
§
(=} 40
30
20 T T T T T Y T T T 1
0 1 2 3 4 5 6 7 8 9

10

Time (minutes)

FIGURE 1 Evelution of internel simulated density using proportion control on Section 5.

be measured by the deviation between real-world observations and
simulation results. The analytical results in the above incident case
are treated as real-world observations. The average deviation and
maximal deviation in terms of density are used as two measurements
to compare the performance of difference adjustment methods and
related settings. In addition to the above measures, density oscilla-
tion is also examined in evaluating the relative performance of the
different methods.

Effectiveness of Proposed Algorithm

The adjustment method is designed to update the internal traffic den-
sity to be as close as possible to the actual traffic flow pattemn. The
result for the proportional control is plotted in Figure 1, where the
thick lines depict the analytical (real-world) results. It is noted that
the proportion gain of 1 is not large enough to enable the simulated
density to follow the real-world density. After testing of different
proportion constants, the calibration results in Table 1 generate the
best proportion gain as 5.5. Table 1 also shows that the respective
performance of different parameter settings for propagation gains is
significantly different. In order to show the overall performance for
the entire system, the density changes for all five sections are plot-
ted. As shown in Figure 2, the density of analytical results (real-
world observations) on Section 5 starts with 30 vehicles/lane-mi up
to 2 min, then jumps sharply to 90 vehicles/lane-mi at Minute 4, and
remains at that level thereafter. Similarly, on Section 4, the real-
world density begins the change from 30 to 90 at Minute 4 and stays
at 90 vehicles/lane-mi after 6 min. Figure 3a shows that the best
parameter value of 5.5 still fails to dampen the oscillations for the
system. Since the first section is the only element that needs to be
adjusted during the first 2 min, the proportional control rule can help

the simulation track the change of actual flow quite well. After the
first 2 min, the shock wave propagates to the downstream Section 4,
so Sections 4 and 5 need to be adjusted at the same time. It is noted
that the simulated density on Section 5 drops sharply from its
desired value. The main reason is that the adjustment on Section 5
did not consider the decrease of inflow from Section 4, which is due
to the reduced control speed on Section 4. Moreover, the continu-
ing oscillation in the remaining period clearly shows that an adjust-
ment method that is only based on local conditions may become
problematic in a simultaneous control context.

Figure 3b shows the evolution of internal density on all five sec-
tions using the dynamic programming approach. It is clear that the
internal flow representation on each section has been successfully
adjusted to follow the real-world flow. Furthermore, the dynamic
programming method significantly reduces the amplitude of the
oscillation. Specifically, the average density deviation is decreased
from 4.900 (proportion gain p = 5.5) to 1.856, or by 62.2%, and the
maximal density deviation is reduced from 22 to 11.

Impact of Different Update Intervais

In the current study, the update interval refers to the simulation time
interval and the observation time interval, both of which have the
same length. The update interval plays an important role in determin-
ing the computation cost and simulation accuracy. The smaller the
update interval, the greater the effort needed to update the internal
simulation values. Table 2 shows the average deviation and max-
imal deviation obtained using different update intervals. The upper
bound of feasible update intervals is 30 s because of the numerical
computation stability condition that A = Ax / (V; Az) 2 1. The results
suggest that the average deviation and maximal deviation for large

TABLE 1 Simuistion Resuits for Different Proportion Gaiﬁs

Proportion gain 1 2 3 4 45 5 55 6 7
Average deviation 16.336] 8.224 | 6.868 | 6.044 | 5.376 | 4.984 | 4.900 | 7.856 | 8.488
Maximal deviation 42 26 32 26 24 22 22 34 40
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FIGURE 2 Evolution of real-worid density using analytic results on five sections.

update intervals tend to be very high. The inconsistency between the
actual flow and the internal simulator flow are due to two approxima-
tion mechanisms in the dynamic programming formulation, namely,
the finite-difference approximation of the dynamics of the MESO
model and the use of macroscopic model prediction for the “actual”
traffic flow states in the next time step.

To isolate the impact of prediction errors in the proposed approach,
a hypothetical case is generated that uses the analytic results as
anticipated values. In other words, the approximation errors due to
the predictor in the objective function do not need to be considered
here, and only the finite-difference approximation to the MESO
mode! accounts for the remaining deviation. The experiment demon-
strates that the decrease in average deviation is very small for an
update interval of 6 s. One possible reason is that even a simple
macroscopic model can do a good job for such a short interval. For
the longer intervals, the average deviations were reduced by about
50%, suggesting that the benefit of using a good predictor could be
considerable. In order to improve the performance of the current
model, it may be necessary to incorporate more advanced finite-
difference schemes.

impact of Different Solution Algorithms

Table 3 shows the performance of three proposed solution algo-
rithms under different update intervals. In particular, the base case
applies the dynamic programming algorithm with the same weight
in the objective function. The second algorithm, using Expression 9
in the objective function, generally attains better performance rela-
tive to that of the base case. Furthermore, as an extreme version of
different weights for each section, the greedy algorithm demon-
strates quite satisfactory ability to reduce the inconsistency between
observed situations and simulated data. The overall result shows that

the performance of the online adjustment model is highly sensitive
to the form of the objective function. Moreover, these experiments
also highlight the importance of controlling error propagation in
a traffic network. Taking the computation cost into account, the
greedy method is recommended for the online flow propagation
adjustment module.

CONCLUSIONS

An optimization framework for online flow propagation adjustment
in a freeway context is presented. Instead of performing local adjust-
ment for individual links separately, the proposed framework con-
siders the interconnectivity of links in a traffic network. In particu-
lar, the dynamic behavior in the MESO simulation is approximated
by the finite-difference method at a macroscopic level. The proposed
model seeks to minimize the deviation between simulated density
and anticipated density. The latter measure is predicted by a macro-
scopic traffic flow model based on real-world observations. By tak-
ing advantage of the serial structure of a freeway, an efficient
dynamic programming algorithm has been developed and tested. The
experiment results compared with analytic results as the base case
show the superior performance of dynamic programming methods
over the classical proportion control method. The effect of varying
update intervals is also examined. The simulation results suggest
that a greedy method considering the impact of inconsistency prop-
agation achieves the best trade-off in terms of computation effort
and solution quality.

To further extend the capabilities of the above models in real-time
traffic management systems, investigation of the following aspects
is the subject of ongoing and future work. First, numerical experi-
ments using field data are expected to give a better understanding of
actual traffic dynamics. Second, it is necessary to investigate the
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FIGURE 3 Simulation results using proportion control and dynamic programming methods: {a) evolution of simulated density
using (&) proportion gain of 5.5 on five sections, (b) dynamic progremming method on five sections.
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TABLE 2 Simuiation Results Under Different Update Intervals

Update interval length (seconds)| 6 12 18 24 30

Average deviation 1.856 | 4.424 | 5.802 | 7.488 | 9.200

Maximal deviation 11 | 14 | 18 | 24 | 24

TABLE 3 Simulation Results Under Different Objective Functions

Update interval length
(seconds) 6 12 18 24 30
Base case with the same weight for objective function
Average deviation 1.856 4.424 5.802 7.488 9.200
Maximal deviation 11 14 18 24 24
Objective function with the different weights as (J+1-j)
Average deviation 1.844 2.120 4.01 4.512 4.82
(99.3%) (49.9%) (69.0%) (60.3%) (52.4%)
Maximal deviation 10 10 22 30 24
Greedy method
Average deviation 1.708 3.104 2.563 4.32 6.24
(92.0%) (70.1%) (44.1%) (57.7%) (67.8%)
Maximal deviation 10 11 16 26 26

numerical performance in other circumstances, such as in heavily
congested traffic. Third, the optimization method for the online
adjustment module should be extended from a freeway level to a
network level, which would correspond to a more complex but more
realistic process.
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