Chapter 4
SIMULATION EXPERIMENTS

This chapter discusses the numerical experiments performed to study the
performance of representative networks under information and provides the
conclusions and insights derived from them along with other results that verify the
validity of ﬂle"programcomponents. “The chapter begins with a discussion of the
kind of information supply strategy studied, in section 4.1. The experimental
designs are explained along with the different networks and information scenarios -
studied, in section 4.2.- Section 4.3 proﬁdeé the results on-system performance,
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computational results.

4.1, INFORMATION SUPPLY STRATEGY

Traffic network information supply strategies can be largely of two kinds:
descriptive and prescriptive. The former refers to the case where the drivers
receive the information on network conditions (route trip times, for instance) and
make the decisions themselves on which route to follow. The latter refers to the
case when the information provided is in the form of guidance advice, such as the
"best" path available (the guidance-control center selecting the “best" path based
on certain criteria, for instancc). Thus mandatory vehicie routing in a network is
a case of prescriptive information supply. However, even when the information
proﬁded is in the form of the "best” path(s) to follow, if the drivers are allowed
to make their on decisions, we consider it descriptive information supply.

‘The kind of information supply strategy studied herc is largely descriptive
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in nature, in that drivers are provided with information on current trip times,
which they use in selecting their routes, which may not always be the "best"
routes displayed by the information system. The various simulations performed are
for different levels. of driver route switching propensity and various levels of
market penetration, thus making it a study of alternative information scenarios,
and not exactly of alternative information supply schemes. However, in 'some of
the cases studied, the driver behavior assumed is such that the best available route

is always selected, which would result in the same system performance as in the

route. Thus, the cases with a value of zero for the route switch threshold fraction

(n in eqn 2.11, section 233) effectively simulates a particular type of
prescriptive information supply strategy.

Another important aspect of the information supply strategy here is that
the provided information is always based on current conditions in the network, as
opposed to expected or predicted conditions. This means that the route trip times
used to make the route decisions are calculated with the existing link travel times
and queue lengths. No attempt is made to carry out simulations with a trip time
prediction algorithm (which is mainly due to the unavailability of comprehensive
prediction techniques in the literature). This is not unrealistic, because many, if
not most, of the existing or proposed traffic information systems are not expected
to have reliable prediction algorithms in the near future. |

4.2. EXPERIMENTAL DESIGN
This section discusses the design of the simulation experiments carried
out. The different networks simulated, the different parameters values used for the
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driver decision, the different levels of information supply and the different traffic
loading patterns are explained in that order. One base-case of no information
supply is modelled along with 25 other cases (five different behavioral scenarios,
each for five different information levels) for each network type and for each

~loading pattern,

4.2.1. Network Types
Two types of networks are simulated: (1) the three-highway, single
destination corridor network and (2) the general network based on the core area

of Austin, Texas. —— -
424.1. Corridor network

The corridor network selected for the experiments is shown in figure 4.1,

There are three uni-directional highways, each of 9 mile length leading to a single
destination, equivalent to a central business district (CBD). The highways are of
three different free-flow speeds: 55, 45 and 35 mph, thus representing a freeway,
a fast arterial street and a slower arterial street. The highways are considered to
be parallel to each other with half a mile dis;tancc from the middle highway (faster
arterial) to each of the other two. Each highway is divided into 9 segments, each
of one mile length. The segments within a distance of three miles from the CBD
are assumed not to receive any traffic generation, while the farthest 6 miles
receive trafﬁc generation. The traffic generation profiles assumed are discussed in
section 4.2.4. " '
Cross-over facilities are assumed to exist between these highways at
certain poiz;ts. These are at distances 3, 4, 5 and 6 miles from the CBD. There are
separate and independent cross-over streets to go from each highway to each other
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highway (thus forming 6 cross-over streets between the three highways at each of
the 4 cross;ovcr points). The cross-over streets between the freeway and the
slower arterial are of one mile length and the others are of half a mile length. The
drivers equipped for information are assumed to make route switch decisions
based on the trip time information provided on each route, whenever they reach
the cross-over points. The implicit assumption here is that only the three
independent and non-overlapping highways are considered by the drivers while
. switching routes, meaning that complex paths with back and forth switching are

not considered to be in their choice set. Of course, the drivers who do not receive

information, do not switch highways and continue on the highway that they start - - -

their trip on.

42.1.2. Austin core general network
' The network includes all the streets in the core region of Austin, Texas.

The region is bounded by the Mo-Pac freeway on the west, the Interstate Highway
35 on the east, the Colorado river on the south and the 26th Street on the north,
This region includes the downtown area, the University of Texas and the largely
residential area to the west of Lamar street. There are 28 traffic demand zones in
this area, as defined by the Planning division of the City of Austin. Due to the
high density of businesses and offices in the downtown area and the presence of
the University of Texas, parts of this region experience the worst traffic
congestion in Austin during the peak periods. Traffic demand from outside this
region and the inter-zonal demand within this region are used for the simulations
as explained in section 4.2.4.2.

Due to the lack of easy availability of a reliable database of all the street

characteristics in this network, the number of lanes assumed in the numerical
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illustration may not correspond to the actual Austin situation. As such the
- experiments are intended not to obtain conclusions specific to Austin, but rather
to illustrate the capabilities of the simulation-assignment methodology. While the
network is large enough and has many characteristics which were desirable to
demonstrate the capabilities of the simulation framework in modelling realistic
large networks, the lack of high-speed highways‘ through the network has to be
considered a disadvantage in studying the effects of route-switching under
_ information. For this reasons some of the highways are assumed to be high-speed
(55 mph) 3-lane arterials (Lamar street in the North-South direction and MLK
- street and Enfield street in the East-West direction).”

The area studied is shown in figure 4.2 along with 7 sections of it (A to

G). The network details (node numbers and connectivity) of these seven secnons

are given in figures 4.3-4.9. These figures 'show the extensions assumed for the

two freeways, Mo-Pac and 1-35, which are necessary to load the heavy traffic

from outside the study area without entry queue congestion (see section 4.2.4.2.

for more details on the demand pattern). All the arcs representing the city streets

are considered straight but their lengths are the actual lengths.

No signalized intersections are explicitly modelled in the network, as the
framework does not simulate signals (this is a future capability that is currently
being de\;eioped). Under sufficiently congested conditions this aspect is not

expected to significantly affect the results and conclusions on route-switching and-

the consequent systern performance under information, as the model does simulate
~queuning at the nodes and thus capture the additional delay at the network
intersections.
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Fig. 4.2 The Austin core network studied (shown within the broken line).
The sections A to G shown here are shown in detail in figures 4.3 to 4.9. The
four residential zone-clusters around the study area are also shown
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Austin Network (portion A)

Fig. 4.3.
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4.2.2, Behavioral model parameters

The behavioral model paramcter _that is changed for the different
simulations is the mean relative route switching indifference threshold fraction, 1
which is the mean of the n, values (see route switching model explained in
section 2.3.3) of all the drivers, Each of the above-mentioned net\x}orks are

_ simﬁlatcd for five different values of this parameter: 0, 0.1, 0.2, 0.3, and 0.5. This

covers the spectrum of reasonable driver responses, from the case of myopic route

switching when § = 0, to the case of conservative route-switching when n =0.5.

The values above 0.5 were not simulated as they do not appear to be realistic, in
. that there is very little chance that a driver will not switch to a route that provides

50 % advantage in travel time over the current route. The .F values are assumed

to have a triangular distributién over the driver population with a range between
0.75% and 1.257 for all the simulation cases.

The value assumed in each simulation for the other parameter of the
_ behav:oral model, which is the absolute minimum travel time advantage ¢ (see
sccuon 2.3.3) that the dnvcrs seek, depends on the network case and aiso the
~ switching propensity. For all the simulations with myopic route switching (i.c., M
= 0.0), a value of 0.0 was assumed for ‘-r, to represent the extreme case of
perfectly myopic route switching which is equivalent to the case with a
compulsory best path routing strategy. For all the other simulation runs, the value
of ¢ depends on the network. For the corridor network simulations, a value of one

minute was assumed for this parameter, while for the Austin network simulations,

a value of 15 seconds was assumed. In an actual corridor network of the type
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studied, there are fewer switching opportunities, and the drivers generally
understand that they do not have many opportunities to switch back if the
alternative route turns out to be worse than expected, especially because the last
three miles do not offer any cross-overs. Their trip distances are relatively larger
too, as all of them travel for at least 3.5 miles. On the other hand, for the general
network, the drivers know that they can make switches till the lasi few blocks near
their destination and may do so especially on-shorter trips between zones which
are close by. Thus a lower ¢ value is reasonable for the general network

simulations. However, observations of actual behavior are necessary in order to

calibrate this and other behavioral parameters.

4.2.3. Level of information

Six different information levels are simulated for each network, for each
of the five behavioral scenarios and under each loading pattern. This is
accomplished by assuming values of 0.0, 0.1, 0.25, 0.50, 0.75 and 1.00 for the
fraction of the driver population that is equipped for information. Of course, the
case of zero fraction of the drivers receiving information is not repeated for
different behavioral scenarios as all the drivers continue on the initially assigned
route throughout their journeys. More levels of the fraction of the drivers receiving
information are simulated at the low end compared to the high end, because
sharper variation in the system performance are expected at the lower levels of

information supply, which is confirmed by the results (see section 4.3).

4.24. Traffic loading patterns
The following two sections explain the traffic loading patterns assumed
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for the two networks, Two loading patterns are considered for the corridor
simulations; an arbitrary uniform departure pattern and a dynamic stochastic user
equilibrium péttem. The loading patterns used for the general network are obtained
by modifying the interzonal daily traffic demand for Austin zones in 1985, the
modiﬁcations being done to achieve 0-D demands with time-dependent variation
during the peak period. |
424.1. Corridor traffic loading

The area surrounding the three highways in the corridor (see fig. 4.1) is
subdivided into one-mile sectors, which contain the corresponding parallel links
of the three facilities. Only sectors 1 tlu'ough 6 (with sector 1 denoting the most
distant from the CBD) are assufned to be residential sectors which generate

commuting traffic. The traffic loading is the result of the time dependent driver

departure functions on each of the three highways. No vehicle generation is
assumed onto the crossover links,

Two different loading patterns are considered in these expeﬂ}ncnts. The
first is an arbitrary departure pattem simply referred to as loading pattern-1.
Under this pattern, commuters in each sector split equally among the three
highways and depart uniformly over a 20-minute period, at a rate of 26.67
vehicles per minute for each facility. The loading pericds for each sector are

staggered with a time lag of five minutes bétween adjacent sectors with sector one

away from the CBD. See figure 4 10 for the cumulative departure pattern for two

sectors (sectors 2 and 5), at 7 and 4 miles respectively from the CBD. All three

highways receive traffic generation at the same rate.

The second loading pattern satisfies the stochastic version of the dynamic
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CUMULATIVE DEPARTURE PATTERNS IN SECTORS 2 & 5

[T

CUM. DEFARTURES /TOTAL SECTOR VOLUME

TIME (MINUTES)

Fig. 4.10. Cumulative departurcs under Loading pattern-1 for the
three highways in sectors 7 and 4 miles away from the CBD.
Simulation case: Route-switch threshold fraction = 0.2,
equipped for information = 0.5)
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user equilibrium (DUE) conditions, which means that no driver can unilaterally
improve his perceived (random) utility by unilaterally switching either departure
time or route. The departure pattern is obtained by iterative simulations till an
equilibrium state is reached under a particular utility function, starting from
utilities under free-flow conditions. To explain simply, these iterations are needed

to achieve consistence between the departure pattern (itself based on the utilities

that drivers receive for a given system performance) and the system performance

(which results from the particular departure pattern). Chapter 5 provides a review
of dynamic user equilibrium concepts and for further details on the iterative

departure pattern here is obtained with the same utility function as the function U1

eilﬁilibraﬁoﬁ"tcchni@e and the calibrated utility function assumed for it. The =~ =

explained in section 5.3. One unp;rtant aspect of this departure pattern is that it
-is distributed over the whole 80 minute period. This is a direct 1'.|:Slllt of the utility
function assumed and the randbmness of the perceived utility which causes a
certain probability for departures at all the departure time and route alternatives
(again, see chapter 5 for details of the definition of departure alternatives etc.).
| -Figurcs 411 and 4.12 show the cumulative departure patterns for two
represéntative sectors, at 7 and 4 miles respectively. The difference in the traffic
departure pattern here from the case of loading pattern-1 can be Seen on
comparison of these figures with ﬁgurc 4.10. The DUE departure pattern involves
unequal traffic generation rates into the three highways, and re.sults in a much
more spread out traffic loading,
4.24.2, Austin network traffic pattern

The traffic pattern assumed for the simulations with the network of Austin
is derived from 1985 data on the average daily interzonal travel demand. Two |
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Fig. 4.11. Cumulative departures under Dynamic User Equilibrium
loading for the three highways in the sector 7 miles away
from CBD. Simulation casc: Route-switch threshold fraction
= 0.2. Fraction of drivers equipped for information = 0.5)
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CUMULATIVE DEPARTURE PATTERNS IN SECTOR 5

CUM. DEPARTURES

TIME (MINUTES)

Fig. 4.12.

Cumulative departurcs under Dynamic User Equilibrium
loading for the three highways in the scctor 4 miles away
from CBD. Simulation case: Route-switch threshold fraction
= 0.2, Frcation of drivers equipped for information = 0.5)
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different loading patterns were used in this study. One is a uniform loading pattem
at 0.1 peak hour rate (which is the same rate as in the case of 0.1 fraction of the
total daily demand being generated over an hour) and a dynamic 7-interval
demand pattern, both derived from the interzonal data. The seven intervals for the
dynamic pattern (called ‘peaked lqéding pattern’ here) are the network fill-up
period of ten minutes during which the demand generation is at 0.075 peak hour

rate, the rate changing to0.15, 0.225, 0.3, 0.225 and 0.15 over the five 5-minute

intervals after that with a rate of 0.0375 after the simulation period of interest (the

vehicles that entered during the 25 minute period of interest clear out during this

“period). Thus there is a demand peaking assumed for the simulation period of
- interest which is the 5 intervals after the fillup (start-up) period. Only the drivers

entering the system after the i;ﬂi;ﬁp period till the end of the 6th period are used
for calculation of system performance measures. Both the traffic loading patterns
are shown in figure 4.13.

As the original interzonal trip interchange data of Austin is 2 matrix

among about 600 zone in the larger Austin area, the data from the zones outside

- of the 28 zone region being simulated was aggregated to 8 external zone-clusters

(which are specified just like any regular zone as part of the input data) based on
certain geometric and other considerations. Four of these zones (outside the
residential areas shown in fig 4.2) were assumed to feed all their demand to the
study area through the corresponding freeway exténsions (Mo-Pac and I-35, each
from North -and Soﬁth; see figures 4.2-4.9) while the othér 4 zone-clusters which
surround the study area (these are groups of zones shown in fig 4.2 to the North,
South, East and West of the network, which are predominantly residential) are
assumed to feed traffic through the entry links around the pcriphery.of the
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Fig. 4.13 The two loading patterns used for the Austin network. Volume
factor = 0.1 results in a vehicle generation rate equal to the rate when 10 % of the
average daily demand is generated over an hour.
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network on the corresponding sides of the roughly rectangular study area.

The four residential zone-clusters are assumed not to have any demand
towards them during the peak period due to their residential nature. Each of the
other 4 zone-clusters generate traffic towards the zone-clusters that the
corresponding freeway (i.c., the freeway that is extended to that zone. See figs.
4.3-4.9) leads to, in addition to the traffic to the 28 zones within the study area.
Thus a reasonable level of through traffic is generated on to the Mo-Pac and I-35
freeways. While this demand pattern is not an exact representation of the actual
tréfﬁc, it is expected to be somewhat close to reality and sufficient for the current

purposes.
All the vehicles that are generated during the fill-up period are assumed

not to receive information and reasonable level of traffic is expected in the
network at the end of the fill-up period. When a vehicle is generated, it is
assigned to an initial path to its destinations, which is randomly selected from the
10 best paths (between its origin and destination) at the end of the fill-up time. It
should be mentioned here that the assignment of the initial paths could have
significant impacts on the resulting system performance, because the drivers
without information stay on these paths throughout their trips. This could cause
unrealistic congestion on some of the paths, especially when these 10 paths are not
very dissimilar and share common stretches. An alternative would have been a
dynamic user equilibrium assignment of the drivers to their initial paths, which is

too involved to have been attempted within the scope of these simulations.

43. SIMULATION RESULTS

This section presents the results from the various simulation experiments.
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The main performance measure is the travel time, the reduction of which is
commonly assumed as the single most important reason behind the introduction
of information systems in urban traffic networks. Statistics on route-switching are
also examined as they provide significant insights into the network dynamics. It
should be remembered that other performance measures are possible such as the
link-level congestion statistics in the network, variance of the travel times over
different groups of drivers and the statistics regarding the éverage values of
earliness and lateness based on assumed work start times. Such measures are
valuable in the evaluation of specific cases of information supply design in
~ specific networks. The simulation program produces such output measures, but

they are not discussed here because of their site-specific nature and the absence

of more general insights in this regard. The folldwihg two sections describe the
results from the cormridor network simulations and the general Austin network

sitmulations. The last section summarizes the conclusions.

4.3.1. Corridor simulations,

An examination of the variation of vehicle concentrations on the highways
for the two different departure patterns is helpful in understanding the reasons
behind the system performance summary measure results. The vehicle
concentration profiles for the three I_xighways over the one mile stretch in s'tector
5 (at a distance of 4 miles from the CBD) are shown in figures 4.14 and 4.15, for
the loading pattern-1 and the DUE loading pattern respectively (for a particular

" information scenario of half of the drivers with information and 0.2 as the mean
route-switch threshold fraction). We can see that due to the considerably more

distributed traffic loading, the vehicle concentrations are quite low in the case of
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CONCENTRATIONS IN SECTOR 5
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Fig. 4.14

Link vehicle densities under loading pattern-1 for the

three highways in the sector 4 miles away from the CBD."

Simulation case: Route-switch threshold fraction = 0.2,
equipped for information = 0.5)
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CONCENTRATIONS IN SECTOR 5
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Fig. 415 Link vehicle densities under Dynamic User Equilibrium
loading for the three highways in the sector 4 miles away
from CBD. Simulation case: Route-switch threshold fraction
= 0.2, Fraction of drivers equipped for information = 0.5)
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the DUE pattern, as compared to the loading pattern-1. In the DUE case, the
densities rarely reach congestion levels, while for the loading pattern-1, the
highways are quite congested, with long periods with traffic moving at the
minimum possible speed (6 mph) under maximum density conditions.

In fact, it is the dynamics of density variations in the three highways that
induces much route-switching behavior. As the information supply system
assumed does not predict future trip time variation on alternative routés, which is
a function of the speed and concentration levels along that route, drivers may |
select alternative highways which perform worse (often due to the heavy route-
switching by drivers to that route). This aspect can be clearly seen in figure 4.14

where densities in highway-1 and highway-3 seem to vary in a negatively

correlated fashion, indicating the improvement and worsening of thé conditions
due to switching activity between the highways. This also means that the drivers
often encounter worse conditions in the alternative routes than they expected while
switching, at least during the congestion build-up phase of the peak period.

Figure 4.16 depicts the variation of the systemwide trip time with the
fraction of the population with access to information, under each of the five
assumed levels of switching propensity. Note that the trip time is expressed as a
percent of the total trip time under the no information case (i.e., no switching);
thus the values in excess of 100 percent correspond to a worsening of systemwide
performance under information. Such worsening occurs under the assumption of
myopic switching, when users switch routes any time an alternative path offers
some improvement in trip time, no matter how small, over the current path.

On the other hand, when an indifference threhold is assumed, there

appears to be benefits in terms of trip time. The best systemwide improvement
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Fig. 416 The variation of the total system travel times in the
3-highway corridor as a percentage of the trip time in the
base case of no information, under different propensities
for driver route switching. Case: Loading pattern-1. (Note:
One curve for each value of the mean route-switch threshold

fraction. The values are shown in the legend.)
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takes place under a mean relative route switch threshold fraction (q }) of 0.2 to
03 i.e., when the equipped drivers on average do not switch routes at
opportunities that offer less than 20 or 30 percent improvement in thé remaining
trip time. At the other extreme, with a y ! value of 0.5, the drivers miss too many
opportunities, resulting in a systemwide improvement of no more than 2 percent.
in general, the inarginal. system-wide improvements decrease significantly as the

information supply reaches higher market penetration, especially after it reaches

about 25 percent of the population. The maximum systemwide benefit obtained

-is about 7 to 8 percent reduction in overall trip time.

Figures 4.17 and 4.18 depiét the average trip times (expressed as a percent
of the comesponding--average—in—the-base—case of no information supply)
experienced by those who have access to infdrmation and those who do not,
respectively®’. Several important phenomena are illustrated by these graphs. First,
the users with information could do worse than they would have in the no
information case, when at the same time tl.'lose without information experience a
reduction in their average trip time relative to the base case. Second, this
worsening is experienced by users when they switch too readily, as seen in the
zero band for higher fractions with information. Third, benefits are incurred by

those without information in most of the cases here. Fourth, the relative

S Please note that the curves are not connected to the 100 percent point on
the ordinate in the case of average trip times of the group with information, which
is because at very low fractions, this group may not be expected to have average
trip times near that in the base case. Also note that there are no drivers without
information when 1.0 fraction of drivers receive information, which explains why
the average trip time graphs extend only to 0.75 for the group without
information,
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Fig. 4.17 Average trip times for drivers not receiving information

in the 3-highway corridor as a percentage of the average trip
time in the base case of no information, fer different driver

route-switching propensities. Case: loading pattern-1. (Note:
One curve for each value of the mean route-switch threshold

fraction. The values are as shown in the legend).
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Fig. 4.18 Average trip times of the group receiving information |

in the 3-highway corridor as a percentage of the average trip-

time in the base case of no information, for different driver

roue-switrching propensities. Case: loading pattern-1. (Note:

One curve for each value of the mean route-switch threshold

fraction. The values are as shown in the legend).
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performance of the two groups is strongly. dependent on the underlying switching

propensity, and/or fraction of information. The group with information shows a

trend of decreasing benefits as the fraction with information increases. On the
other hand, the group without information shows increasing benefits from
information as the fraction with information increases.

Similar phenomena can be detcétcd in the case of the Dynamic User

Equilibrium (DUE) departure pattern also. As this departure pattern results in

considerably less congested conditions than loading paftem-l; it should be
expected that the potential of information to reduce systemwide trip time would

- under information for the DUE traffic loading. The results differ from those under
the loading pattern-1 in that while no cases are encountered where the supply of

the information increases the total time, the reductions attained are generally
smaller in relative magnitude than those under the more congested first loading
pattern, The maximum improvement is only about 5 percent. The same general
trends as in the case of loading pattern-1-are present here, in that the marginal
effectiveness of information dramatically decreases, and in some cases actually

—reverses (as in the case of myopic switching with zero threshold) after a certain
fraction of the population, between 25 to 50 percent, is equipped to receive
information.

Figures 4.20 and 4.21 presént similar resuits as figures 4.17 and 4.18 for
the DUE pattcfn,-reflecting the relative improvement of average trip time for users
with and without information. The results differ from those under the first loading
pattern in that the users with information seem to outperform those without

information in virtually all cases. This appears to be a case of the system having

"diminish. Figure 4.19 presents the variation of the system trip time improvement
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Fig. 4.19 ° The variation of the total system travel times in the
3-highway corridor as a percentage of thc trip time in the
base case of no inf‘nrmaiion, under different propensities
for driver route switching. Case: DUE loading pattern. (Note:
One curve for each value of the mean route-switch threshold
fraction. The values are shown in the legend.)
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Fig. 420 Average trip times for drivers not receiving information
in the 3-highway corridor as a percentage of the average trip
time in the base case of no information, for different driver
route-switching propensities. Case: DUE loading pattern-1.
(Note: One curve for each value of the mean route-switch
threshold fraction. The values are as shown in the legend).
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Fig. 421  Average trip times of the group receiving information
in the 3-highway corridor as a percentage of the average trip
time in the base case of no information, for different driver
roue-switrching propensities. Case: loading pattern-1. (Note:
One curve for each value of the mean route-switch threshold
fraction. The values arc as shown in the legend).
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a ‘smoother’ traffic pattern with greater peak spreading and less congestion, where
information availability allows the drivers to fine-tune their path selection, thus

causing their locally optimal decisions to contribute towards global improvements.,

4.33. General Austiﬁ Network Simulations

Compared to the cases of the corridor simulations, the Austin network
simulations show a few different performance trends. Some of these differences
are expected due to the vastly different network structure as well as the assumed
traffic loading. First, in this network each driver makes route-switch decisions
with different sets of routes while all the drivers have the same three Toutes to
select from in the case of the corridor. Second, the general route structure and the
abundance of routes of comparable characteristics imply that the routes in the
choice sets of the drivers may not be providing vastly different trip times (note
that in the case of the corridor the choice set always consists of three non-
overlapping highways of different speeds, while in the general network, the K- _
shortest path choice set has routes which may be sharing common stretches). A
third and very important factor is the initial path assignment to the drivers, wlii_ch
are always based on the best routes stored at the end of the network fill-up time.
The differences in the performance trends discussed beiow, as compared to the
corridor network, should be evaluated keeping those factors in mind. The
conclusive section of this chapter provides further discussion on the effects of
these factors.

The difference between the two traffic loading patterns (uniform and
peaked) is clear from the vehicle densities in a representative link shown in
figures 4.24 and 4.25. The peaked pattern results in higher densities in the network
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'Fig. 424  The vehicle density variation in a selected link (North-bound Mo-
Pac north of Colorado river) during the simulation of Austin network (Load case
: Uniform loading)
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Fig. 4.25 The vehicle density variation in a selected link (north-bound Mo-
Pac north of Colorado river) during the simulation of Austin network (Load case
: Peaked loading)



159
and shows higher variations between different information scenarios, pointing to
more switching opportunities in the case of the peaked pattern. It is interesting to |
note that this did not result in better overall trip time benefits for the system or
for the group of drivers with information, as compared to the uniform loading
case, which is discussed next.

Figure 4.26 dépicts the variation of the total system travel time (expressed
as usual as a percentage of the base case of no information) for the uniform
loading pattern. We see similar patterns of system Jlevel trip time advantages, in
that most of the possible benefits are achieved with low market penetration of
information, with only 25 to 50 percent of the drivers equipped for information.,
The system does not perform worse under information supply in almost all the

cases. However, in contrast to the corridor case, the case of myop:c switching
does not appear to result in worse performance compared to route-switching with
an indifference threshold.

The impact of information on the two groups can be seen in figures 4.27
and 4.28, which present the average trip times of the drivers without information
and with information, respecﬁvely, as percentages of the no-information case.
Again, myopic switching appear to result in better benefits to both these driver
groups. These figures show that when the number of drivers equipped for
receiving information increases, the average trip times of the drivers with
information remain rather constant and the trip time benefits of the drivers not
receiving information increases. This also is a different frend than in the corridor
case where increasing market penctration of information results in larger benefits
to the group without information at the expense of the group with information

whose trip time benefits decrease.
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Fig. 4.26. The variation of the total system travel times in the
large Austin network as a percentage of the trip time in the
" base case of no information, under different propensities
for driver route switching. Case: Uniform loading. (Note:
One curve for each value of the mean route-switch threshold
fraction. The values are as shown in the legend.)
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Fig. 4.27. Average trip times for drivers not recciving information
in the Austin network as a percentage of the average trip
time in the base case of no information, for different driver
route-switching propensities. Case: Uniform loading. (Note:
One curve for each value of the mecan route-switch threshold
fraction. The values arc as shown in the legend).
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Fig. 4.28. Average trip times of the group receiving information
in the Austin network as a percentage of the average trip
time in the base case of no information, for different driver
roue-switrching propensities. Case: Uniform loading. (Note:
One curve for each value of the mean route-switch threshold
fraction. The values are as shown in the legend). -
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The case of the peaked loading shows some different performance
characteristics, which appear to differ from the uniform loading case as well as the
corridor cases. Figures 4.29, 4.30 and 4.31 depict the travel time benefits for the
system and the two groups of drivers as before. The most notable difference with
the uniform loading case is that the benefits derived by the group with information
decreases for higher market penetration of information (fig 4.31) while it was
staying somewhat constant in the uniform loading case. Of course, this is in line
with the trend shown by the corridor cases. The reason is that there are more
switching opportunities which causes over-reaction by the drivers and congestion
on alternative streets to which they switch. We again see reducing marginal
improvement of the system average trip time on increased market penetration, as

‘shown in fig. 4.29. The benefits derived by the group without information is

smaller than those in the case of uniform loading (fig. 4.30). This can be
explained as follows: the peaked loading case introduces higher level of
congestion in the stored paths assigned to the drivers without information, as
compared to the uniform loading case. Even though the drivers without
information have switched away from these paths, the larger number of drivers in
these paths itself reduces the relative benefits from the switching of the drivers
with information. As in the case of the uniform loading in the Austin network,
but contrary to the corridor simulations (with loading pattern-1), the myopic
switching behavior tends to result in better benefits, systemwide and also for the
group of drivers with information. ‘

It is also notable that even with higher variation of density levels
(implying more route switching opportunities), the dynamic peaked loading results
in lesser trip time benefits than the uniform loading in the Austin network. This
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Fig. 4.29. The variation of the tota) system travel times in the
large Austin network as a percentage of the trip time in the
basc case of no information, under different propensities
for driver route switching. Case: Peaked loading. (Note:
One curve for each value of the mean route-switch threshold
fraction. The values are as shown in the legend).
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Fig. 4.30. Average trip times for drivers not receiving information
in the Austin network-as a percentage of the average trip
time in the base case of no information, for different driver
route-switching propensities. Case: Peaked loading. (Note:
One curve for each value of the mean route-switch threshold
fraction. The values are as shdwn in the legend).
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Average trip times of the group receiving information

in the Austin network as a percentage of the average trip
time in the base case of no information, for differcnt driver
rouc-switrching propensities. Case: Peaked loading. (Note:
One curve for each value of the mean route-switch threshold
fraction. The values are as shown in the legend).
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is in line with the results from the corridor simulations, where the trip time
benefits were less when more drivers were making route switches.

The route-switching statistics of a specific simulation run with the peaked

loading case for the Austin network reveal further interesting aspects. These

statistics are shown in tables 4.1 and 4.2. The myopic switching behavior (i.c., W

= () produces many route changes during the trip (table 4.1), while the other cases
only rarely produce more than one route change during the trip (table 4.2). The
average distances at which the route switches ocuurred show that about 70 to 80
percent of the route switches by the group with information are made within the
beginning 0.40 fraction of the trip length and about 50 percent occur within 6
percent of the trip length, in the cases of the Myopic switching. This is strongly

indicative of a prcpondcranc; of route changing near the starting point. This is
important because the initial paths assigned to the drivers are always based on the
paths at the end of the fillup period, and may be quite different from the best
paths available to a driver at departure. This points to the necessity for better
methods of initial path assignment,

The non-mypoic switching cases (table 4.2) show that as the indifference
threshold fraction increases, the route switching is attempted farther away from the
starting point. The fact that there are no second switches with the non-myopic
switching cases implies that the drivers are switching to relatively good routes
after which they do not find better routes. Another interesting aspect is that there
are more single switches in the non-mypoic switching case within a short distance
from the starting-point of the drivers than in the case of non-myopic switching,
What this means is that when the drivers switch to altemnate routes whenever they

find some trip time advantage on them, they cause the trip times on their current
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paths to be better, thus preventing further switches. This also explains why the

Route Fraction Total # Route Number of | Average
switch of drivers | of route | switch | vehicles fractional
threshold with info. | switches | number | making trip length
fraction switches of the
switches
i 1st 2130 0.0574
2nd 578 0.2643
0.10 4315
3rd 468 0.3571
4th 330 0.4586
1 1st 5343 0.0577
2nd 1440 - - 1-0.2530
0.25 11510
3rd 1153 0.3398
4th 844 0.4278
1st 10745 0.0588
2nd 3177 0.2395
0.0 0.50 26856
3rd 2569 0.3215
4th 1936 0.3920
1st 16289 0.0594
2nd 5076 0.2288
0.75 44484
: 3rd 4173 0.3047
4th 3287 0.3778
Ist 21793 0.0593
2nd 7020 0.2249
1.00 62542
3rd 5864 0.3067
4th 4718 0.3778
.

Table 4.1. Route switch statistics for mypoic driver behavior. Case: Austin
network, Peaked loading. (Note: Some vehicles made more than 4 switches.)



Route Fraction of | Total # of] Number of | Average
switch drivers route single fractional
threshold with info, | switches | switches trip length
fraction of the
switches
0.10 1418 1418 0.1904
0.25 3583 3583 0.1871
0.1 0.50 7082 7081 0.1948
0.75 10579 10578 0.1951
1.00 14035 14034 0.1943
0.10 1022 1022 0.3365
0.25 2559 2559 0.3259
0.2 0.50 4999 4999 0.3259 |
_ _0.75 7475 7475 0.3272
1.00 9916 9916 0.3281
0.10 {647 | 647 0.4167
025 |1738 | 1738 04064 |
0.3 0.50 3390 3390 0.4047
0.75 5067 5067 0.4126
1.00 6697 6697 0.4136
0.10 365 365 0.6664
0.25 041 941 0.6667
0.5 0.50 1829 1829 0.6621
0.75 2672 2672 0.6651
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Table 4.2. Route switch statistics for non-myopic driver behavior. Case: Austin
network, Peaked loading. (Note: Almost all vehicles made only 1 route switch.)
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density patterns in figure 4.24 show marginally smoother density variations in the
case of the myopic switching,

For the myopic switching cases, the average fractional distances at
whichroute switching occurs is relatively robust under different market
penctrations, the reason for which is not very clear. These increases as the
indifference threshold fraction increases, which could be due to the increased
switching activity nearer to the destination due to heavier congestion at these

zones.

44. ILLUSTRATIVE RESULTS ON THE MODELLING FRAMEWORK

~This section serves three ‘purposes: 1) Give some examples of other

insights on network performance that can be derived using the modelling
framework, which would highlight its additional capabilities, 2) Verify that the
model is ‘reasonable’ in the way it captures the dynamics of networks under
information and 3) Provide a description of its computational capabilities.
Subsection 4.4.1 reports on the dynamic changes of the network paths as well as
the path choices of a representative -driver. Section 4.4.2 provides certain

computational results.

44.1. Path dynamics and Driver path selection

It is important to understand the dynamic changes that occur in the
network with regard to the shortest paths. As the k-shortest paths are stored in this
framework, it is useful to gain insights into the dynamics of the k-shortest path
sets. This has implications on deciding how many paths should be there in the

path sets (ie., what should be a reasonable value for ‘k’), as well as to confirm
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that such an approach is reasonable,

Table 4.3, provides some illustrative results on how the shoortest paths
changed on-one specific simulation of the Austin network. The results shown are
the average statistics from the path sets for all the O-D pairs compared every 2
miutes of simulation. A few intersting observations can be made from this. On the
average about 3 of the paths change their ‘rank’ in the path-set (i.c., swap
positions in the k-path list ordered according to the shortness of the paths or they
drop out of the path) during a 2 minute period. Only about 1 path out of the 10
drop out of the path list, though, This means that there is no need to re-enumerate
the paths after each simulation time step (0.1 minute in the simulation runs here).
It would be sufficient to just recalculate the path trip times every simulation time-
step. Thus, the premise that a path trip time aggregation module (which is faster
than the k-shortest path module) had to be developed, is verified. The facts that
3 paths change positions in the path list during 2 minutes as well as that the
shortest paths changes about 25 percent of the time are also important, as they
help in deciding the frequency of shortest-path enumeration, The updating interval
used her (1 minute) appears to be adequate based on this.

Fig. 4.32 shows the path followed by a specific driver going towards a
downtown node in Austin. We see that the initial path that the driver started on,
was quickly changed to an alternative path which is not changed any more. This
behavior of a route-switch in the early part of the trip is confirmed also by the
route-switching statistics provided in the last section. It also implies that, as the
initial path assignment is based on a stored set of paths which do not depend on
the prevailing conditions at departure, the driver is able to find an altemative route
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Fig. 4.32 Initial path and the path after a switch for a representative driverin

the Austin network.
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Time | Averagc#of | Average#of | Fraction of cases
paths out of 10 paths out of 10 | where the shortest
that changed that dropped out path changed.
2.0 2.16 0.51 0.18
4.0 2.79 0.62 0.21
6.0 3.06 1.03 0.24
8.0 3.66 0.94 0.28
10.0 3.87 1.32 0.27 |
12.0 3.71 1.13 0.29 |
I 140 3.49 1.05 027
I 160 3.89 - —- 1.28 0.29
18.0 2.94 1.01 0.25
20.0 3.60 1.19 .0.28
220 3.55 1.06 0.28
240 3.61 1.32 0.27
26.0 3.16 1.14 0.25 [
28.0 3.95 1.42 0.26 i
30.0 3.04 0.98 0.27
32.0 3.68 1.03 0.29
34.0 2.79 0.99 0.23
36.0 2.90 1.02 0.25
38.0 2.96 1.09 0.25
n 40.0 3.10 1.04 0.26
Table 4.3,  Path statistics from successive K-shortest path sets.
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very quickly. Thus the information supply here is effectively similar to that of pre-.
trip information supply. This underscores the concerns expressed earlier about the

initial path assignment,

4.6. Computational Results

Three different aspects of the computational intensity of the general
modelling framework are studied using the Cray YMP-8/64 computer: 1) the
computational intcnsify of the various bomponent modules of the framework, é)
the computational effort when the model is applied to networks of different sizes
with different demand levels and 3) the comparison between the sequential and

vectorized path-updating routines. No results on the corridor simulation model are

provided as this model was developed for a specific network structure and was
found to have very small computational times (about 30 seconds for a 2-hour
- simulation of the three-highway c‘on'idor) compared to the general network, due
to its fast path-processing capabilities,

_ Table 4.4 provides the representative results on the computational intensity
of the program routines as found in a 50 minute simulation of the Austin network.
We see that about 75 percent of the execution time is spent on path processing,
as compared to about 20 percent in vehicle simulation. It is seen that the path trip
time aggregation routine executes about 7 times faster than the k-shortest path
enumeration routine, This means that calling the enumeration routine only once
in 10 simulation time steps reduces the computational effort tremendously, While
there is no easy way to judge the efficiency of the algorithms and data structures

used here, it can be seen that most of the premises under which the path-
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Total time (seconds) Time per call
Main program 328 328
Vehicle Moving 98.4 0.2
' Decision Modelling 2.1 .-

Initial Path Selection 0.4 -

K-shortest path finding 112.3 4.49

Path trip time 3120 0.70
aggregation

Total Execution Time = 558.0 seconds

"Table 4.4. Computational Performance of the Component modules.
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Case Nodes Arcs Vehicles Computation
Time (sec)
SbySgrd | 25 80 1250 6.58
25 80 2500 7.73
10 by 10 grid| 100 360 ASOOO 49.2
100 360 16000 52.8
Austin 630 1770 22000 558.0

Table 4.5 Computational Intensity of different network cases.



177
processing routines are developed carefully are proved reasonable, especially the
computational intensity in modelling this component of network dynamics.

Table 4.5 provides results on applying the framework to various network
sizes. Three different sizes are considered. A 5 nodes by 5 nodes network, a 10
nodes by 10 nodes network and the Austin network. Both the grid networks have
two-way streets which are each 500 ft long between the nodes. For the grid
networks, the total demand was divided equally among all the nodes and the

vehicle generation is uniform over a 50 minute period. We see that the

computational intensity docs not show a highly non-linear increase with the = = .. =

number of nodes (or number of arcs, which itself is roughly linear with number

of nodes-incity networks). In fact the times increase ten-fold as the number of
nodes increases four-fold,-from 5 by 5 to 10 by 10. There is an eight-fold increase
as the number of nodes increase another 6-fold to the Austin network case. This
is a very significant result, pointir;g to the fact that even larger networks may be
simulated without an unacceptable increase in computational effort. “The
‘computation times vary only very little as the demand levels vary. This has to be
expected, as the main loops in the simulation are written in such a way that all the
links (in fact, link-segments) are looped over and the vehicle loop within this has
relatively constant upper limit (due to maximum number of vehicles in each link-

segment) regardless of overall demand levels.

4.5, CONCLUSIONS
Several conclusions can be derived from the simulation studies reported

in this chapter. Most of these are qualitative in nature, but nevertheless may be
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considered sufficiently generalizable, due to the variety of information scenarios
simulated for networks and loading conditions of extremely dissimilar nature.

The most significant conclusion is that traffic networks could obtain
significant benefits from implementing driver route information systems. There
were only very few cases where the system performed worse under information
and even in those cases the system trip time increases were small (less than 2%).
Up to 10 percent improvement was obtained under information, which is probably
more than what can be obtained in congested urban traffic systems with any of the
__ existing_traffic engineering solutions (except, perhaps demand peak-spreading,
which is usually a socio-political solution beyond the traffic engineer’s control).

In most of the cases, it is found that relatively-low-levelsof market
penetration (about 25 to 50 percent of drivers with information equipment) is |
sufficient to achieve almost all the possible benefits, It is also seen that the driver
population with information may ﬁceive decreasing benefits when more drivers
are equipped. These, coupled with the fact that the drivers without ‘inform:;tion
receives increasing benefits, open up an array of issues regarding e,eqﬁitable and
cost-effective designs of information supply schemes. "

Certain results from the simulations of the Austin network may appear
contradictory to the results from the corridor simulations. Most significantly, it is
seen that the perfectly myopic behavior of switching to a route that provides a trip
time advantage, however small, results in worse system performance in the
corridor case. On the contrary, for the Austin network, myopic switching results
in the best performance. One reason for these seemingly contradictory results

could be the way the initial paths are assigned to the drivers in the general
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network simulations. These paths are randomly selected from the best paths stored
at the end of the fill-up times, which may be considerably different from the best
paths later on. This means that an initial switch would almost always provide them
a better path with considerable benefits. This and the fact that route-switching is
rarer in the general network due to the very similar paths in the k-shortest paths
imply that those who do not make a switch would travel on a worse route. Such
effects due to the initial path assignxﬁents can be avoided by incorporating a
calibrated model of initial path selection. At the present time no such models are
available and it is difficult estimate the effect of the initial paths in the results
rcpdrted herein,

Several aspects of network dynamics need to be studied further, which
cannot at present be attempted due to insufficient data. These include the pre-trip
route selection behavior of the drivers, precise modelling of their travel near the
destination etc. Dynamic models need to be developed for the drivers’ learning
behavior and day-to-day adjustment of route and departuref times as well as ‘thcir
en-route decisions without information. Similarly more accurate origin—ﬁestination

matrices need to be developed.



Chapter 5
NETWORK EQUILIBRIUM UNDER INFORMATION

One important concern in evaluating urban traffic networks under
information supply is the dynamics of the effectiveness of information, namely the
evolution of the driving patterns in the network under information. The utility that
each driver derives from driving on a certain route under information may be
different from the utility from the route he/she was driving on when route

information was not available. Thus information supply may induce perturbations

in the traffic system, causing it to go through an evolutionary period when the

drivers adjust their departure time and route decisions till they possibly reach a

state when they do not make adjustments and the traffic system is under
‘equilibrium’. Thus, the advantages that information supply provides is more
meaningful when analyzed from the perspective of the equilibration characteristics
of the system. This chapter discusses this aspect, focusing mainly on how a
system under equilibrium without information reequilibrates when information is
provided and how sensitive the equilibration is to the utility functfbn assumed.
The multiple-facility-single-destination modelling program is used for this
study, due to the ease with which discrete alternatives for driver decisions can be
defined in this model and the very significant computational advantage it offers
over the general network model. Section 5.1 provides a brief background review
that complements the discussion in chapter 1 (section 1.3) on this topic. Section
5.2 explains the methodology (iterative simulations). Section 5.3 discusses the

results.

180
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5.1. BACKGROUND REVIEW

An introduction of some of the research efforts on modelling in-vehicle
information systems based on network assignment was given in chapter 1 (section
1.3). A detailed discussion of the underlﬁng assumptions of network assignment
is presented here.

The traditional network assignment theory as it developed in the late 60’s
based on carlier efforts by Wardrop (1952) and Beckmann (1956), was concerned
with finding link flows in traffic networks under static conditions with known
traffic demands among the different origins and destinations. Finding the link
flows is approached as an assignment problem where flows are assigned to the

network links under optimality or equilibrium conditions. Optimality means that

~ the total trip time cost based on flow-dependent link costs is minimized subject

to flow conservation constraints, which results in the best total cost in the system.
Under such assignment, the each drivers may not be achieving the optimal route
travel costs from his/her individual point of view. As a result, they may change
their routes (unless their route choices are controlled externally) and the network
may not be under equilibrium. When the drivers ‘cannot unilaterally change routes
and achieve a better route trip time cost’, as defined by Wardrop (1952), the
network is under ‘user equilibrium’ (UE). Finding the network flows under user
equilibrium is also an assignment problem similar to the optimal assignment
problem, but with a different equivalent objective function (Beckmann, 1956) that
can be proved to result in user equilibrium conditions. While system optimal
assignment is important from the point of view of controlling the traffic in a
network, user equilibrium is important from the point of view of predicting how

the system would (or can) perform on its own in a steady-state.
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User equilibrium results in unequal flows on different routes (between an

O-D pair) whose trip times are the same at equilibrium, and there is no apparent
intuitive reason why different numbers of drivers should drive on routes with the
same trip time. This resulted in a further refinement of the equilibriom conditions
as the case when ‘no driver can unilaterally change routes to gain better perceived
travel time, which is defined to be a random variable’. The stochastic user
equilibrium (SUE) assignment problem based on this definition was first
formulated by Fisk (1980) and Daganzo and Sheffi (1977). The perceived trip time

on a particular route is considered a random variable T, (over the driver

population) such that T =¢ +¢ , Where t, is the deterministic component (actual
trip time cost) and e, is a random part. If e, is a random variable that is

independently and identically Gumbel® distributed over the drivers and the
routes, the demand using the different route alternatives will be in a logit form,
which is,

2,

d = D=t

'y

e 5.1
alr

where, 4 is the demand on a particular route between an O-D pair for which the

total demand is p. Based on the distribution assumed for the random term, other

2 The cumulative Gumbel distribution is given by
F(w) = Priesw) = e* <%k

where E is the Euler’s constant (E = 0.5708....)
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forms of demand division are possible, such as the probit form that results from
assuming a Normal distribution. The average trip time on each route is a function
of the traffic flow on that route, and it has been shown that the actual route flows
can be found using mathematical programming problem, using an equivalent
objective function. For the logit case, Fisk developed the first solution method
(1980). For the probit case, the problem was formulated by Sheffi and Powell
(1982). Solution techniques can be found in Sheffi (1985). This usually results in
unequal flows on different routes between the same O-D pair. The drivers perceive

the routes to have the same trip times, but in reality the routes have different

average trip times. This explains the different flows on these routes, thus removing

the non-intuitiveness of the original user equilibrium, which was mentioned in the

Tast paragraph. The original user equilibrium is in fact a special case of the
stochastic user equilibrium. When the variance of the perceived travel time is zero,
SUE results in the original UE.

One main drawback of the static assignment analysis is that the O-D
demands and the resulting link flows are considered not to vary in time, which is
hardly a correct assumption in most urban contexts. If the time-varying demand
pattern is known, then the problem is to find the link flows during different time
periods that result in the optimal system costs or equilibrium conditions. This is
called the dynamic network assignment problem, The system optimal dynamic
assignment problem was first formulated by Merchant and Nemhauser (1978).
Carey (1987) has explored the convexity and solvability of the problem under
certain linearity assumptions. ' :

The Dynamic User Equilibrium (DUE) problem is more complicated than

the static problem, as alternative definitions are possible for equilibrium
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conditions, For instance, dynamic equilibrium can be based on just the departure
time decisions of the drivers in idealized cases whc.zrc the route choice is not of
concern {Cosslet, 1977; Abkowitz,1981; De Palma et al, 1983). A more realistic
case is when the routes and the departure times are both selected by the drivers.
Mahmassani and Herman (1984) analyze the dynamic equilibrium in a two-route
network using link traffic flow relationships. One definition of such a dynamic
user equilibrium would be that ‘no driver can unilaterally change his/her rou'te at
departure to obtain better trip times’, This is the definition used by some of the
researchers. For instance, Janson (1990) considers the case of equilibrium route
choice based on trip ﬁﬁi;;;ii&éf'tiir}:c-dcpendent O-D demand and Mahmassani

and Herman (1984) consider the route and departure time choice at equilibrium

based on utilities. An alternative definition is provided by Wie et al (1989) and
Ran and Shimazaki (1990) which is that ‘no driver can unilaterally change his
route at any instant during the trip to obtain better trip times’ (departure time
choice was not considered by them under the assumption of fixed demand
variation). Such a definition implies that the problem is in terms of variables that
are continuous time-based functions requiring optimal control formulations (which
are discrete-time formulations of the same problem. As should be clear by now,
there is no consensus yet on what kind of equilibrium really exists in networks (if
such equilibria do exist) and hardly any empirical data has been collected on this
aspect.

' The intent in this chapter is to study a Stochastic Dynamic User
Equilibrium (SDUE), meaning that ‘no driver can unilaterally change his departure
time or route to obtain bester perceived utility’, which is also the definition used

by Ben-Akiva et al (1986). It can be seen that the stochastic equilibrium here is
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slightly different from the original definition of Sheffi and Daganzo (1977), in that
it is based on the perceived utility instead of just trip time. The reasons for basing
this on utility are as follows, If it is based on just the travel times, the drivers can
leave early or late when there is no congestion and we obtain unrealistic solutions.
Thus, we need to base it on a utility function involving the schedule delay
(earliness or lateness on arrival). In addition, under information, the perceived trip
time is the same as the actual trip time, or the variance of the perceived trip times
over the drivers (for a particular route at a particular time) is very small, On the
other hand, the utility perceived by the drivers is still a random variable, and thus
a stochastic equilibrium based on utility is more meaningful under information. )

The equilibrium is assumed to be based on the perceived utilities at departure,

which means that the route decisions en-route are not based on the utilities. Still,
when the departure decisions are at equilibrium, the en-route decisions by the
drivers (based on trip times alone) are deterministic and thus equilibrium
conditions do prevail during the trip. Next, the methodology adopted for
equilibrium analysis is discussed, followed by some more comments on the

underlying assumptions.

52. METHODOLOGY
The driver departures are assumed to be based on a selection from among

a few discrete route and departure time combinations using the utility that

can be derived from the selection. It is assumed that there are N, departure time
alternatives and N, route alternatives, thus forming NyNy combinations for the

driver to choose from. The utility U, perceived by driver ; from a trip starting
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at departure alternative {z,7} where ¢ is one of the time alternatives and » is one

of the route alternatives, is composed of two terms,

+e 5.2

tri

U

tri

V,

tri

where, ¥ is the deterministic (systematic) part of the utility for driver § on

selecting the departure alternative {y}. In general, this could be different for
different drivers due the systematic attributes such as location, age, income etc.,

but only identical drivers are assumed in this study and hence this part is the same

(V") over all drivers selecting the alternative {z, 7). €, is the random part that

is different for different drivers, departure times and routes.
The division of the total traffic demand into various fractions choosing

each combination at equilibrium, is based on their v, value, and the distribution

of the random term. The random term is assumed to be independently and
identically Gumbel distributed (see footnote 1 of section 5.2) here, resulting in a
logit demand division,

- V"
d =

i

D—=— 5.3
Y e

ol tr

where, p is the total demand and d, is the demand choosing departure alternative

{¢,r}. The implicit assumption here is that the departure choice is independent of
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the route choice®.
The next three sections describe (1) the network studied, (2) the function
used for systematic utility and (3) the iterative technique used to find the
equilibrium, in that order.

5.2.1 The case-study: Network and Experimental set-up

The corridor network with three parallel highways is modelled in this
study using the efficient corridor program described in section 3.8, The selection
of such a case-study is based on two reasons: (1) The fast path-processing
capabilities of the parallel-faéility-single—destiﬁéiion-silﬁuléﬁbn programhelpsu—i
carrying out the iterative simulations within the available computational resources
and (2) the network structure with independent routes of similar lengths is
preferable for the assumption that the random terms of the perceived utility are
independently and identically distributed (IID).

The network and the assumed demand are the same as those described in
Chapter 4 (sections 4.2.4.1 and 4.3.1). The three highways in the network are each
of 9 mile length and have free-flow speeds of 55, 45 and 35 mph, All three lead
to the same destination, with the 6 miles farthest from the destination generating
driving demand at 1600 veh/mile over the peak period of 80 minutes studied. All
drivers are assumed to have identical work start-times (time = 80).

The peak-period is divided into 16 discrete departure time alternatives,
each of 5 minute length. The drivers choose from any of the three routes, and thus

% Thus, we assume a ‘joint logit’ structure, Of course, it is possible to relax this assumption by
using a ‘nested logit’ structure with certain assumptions on the dependence between the two
dimensions of choice, namely the route choice and the departure time choice.
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for each driver there are 16 y 3 = 48 departure alternatives, each with a certain
systematic utility (as explained in the next section), which is the average utility
derived by all the drivers that select that alternative. The demand in each of the
one-mile sectors of the corridor farthest from the destination are assigned to 48
alternatives. Certain sensitivity studies were also carried out on the utility function
(see next section) by adjusting the coefficient of early-side schedule delay. Two
other values, 0.00084 and 0.00063 were tried in addition to the calibrated value
of 0.00042.

5.2.2 Utility Function

The systematic utility function used for this study is a modified version
of one calibrated by Hendrickson et al (1984) based on data from commuters in
the Pittsburgh area. The original calibrated utility function included certain terms

which were meaningful in the Pittsburgh study, even though Hendrickson et al did
not find them statistically significant. After deleting those terms which are not
pertinent in this study, we get the following utility function that was used for the

iterative simulations.

¥, =  -0021TT, - 0.021CT,, - 0.00042(SDE,)

r

~0.148SDL,, + 0.014(SDL, )} 5.4

where, for trip time alternative t and route r,

1 4 = Systematic Utility

tr

7T = Free-flow travel time on route .
,
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CcT, = Additional trip time (over free-flow time) due to congestion.
SDE,, = Early-side schedule delay = max((Work start time - Arrival time),0)

SDL,, = Late-side schedule delay = max((Amival time - Work start time),0)

This utility function is simple and includes variables that are directly
obtainable from the simulation, making it a suitable one for the current purpose.

5.2.3 Iterative equilibration technique

The intent is to find a Stochastic DUE departure pattern. The total traffic
demand from each one-mile sector gets divided into demands selecting the
different departure time and route alternatives with a logit split according to the

utilities (based on the utility function specified in the last section).ﬂ'mc utilities are
the result of the traffic conditions caused by the demand split too, which imply
that we need to find a solution where the utilities assumed for a certain demand
split matches the utilities that result from such a traffic pattern. Of course, a logit
split does result in SDUE as explained in the last section. An iterative technique
is used to achieve such a departure pattern {i.c., demand splits). The procedure
starts with a set of assumned utilities for each departure altemative and assigns the
traffic accordingly. From the simulation, a new set of utilities are obtained, which
is used to assign the traffic for the next iteration. Equilibrium is reached when the
assigned traffic pattern in two iterations are the same or are sufficiently close.
A smoothing procedure is required to achieve a faster convergence as well
as to ensure the convergence to one¢ solution, as there is no quarantee that there
is a unique solution. The procedure used here is called ‘the method of successive

averages’ (MSA). This method is usually suggested for stochastic user equilibrium
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assignment for an iterative search along a descent direction for the minimum of
the equivalent objective function (see Sheffi, 1985. pp. 326-340). Even though the
problem here is different in that it is not an equivalent optimization, but is rather
a search process, the nature of the problem renders it particularly suited for this
kind of a smoothing procedure, The technique is as follows.

Given: Free-flow trip times on the network routes (these can be found by
static addition of free-flow trip times on the links, which in turn
depend only on link-lengths and free-flow speeds on the links)

Step 0. Iteration index, p = 0. Assign the volumes selecting each

departure alternative at iteration 0 accordiné to a logit split (see

" Eqn. 5.3) bascd on free-flow utilities. £ ={x Vrz} arc the set of
volumes assigned during this iteration. |

Step 1. Perform the simulaﬁon using £ and find the actual utilities of the

departure alternatives. Calculate the volume splits,y' = {ynvr, t)“

according to these utilities

Step 2. The volumes assigned for the next iteration are,

1
fud = ‘fu + ;yn

Step 3. If |y, -x,| s N, Vzx,€Z%,y,¢e5, STOP (N =say, 2).
Else, p = p+1 and go to step 1.
Comments are in order here about the methodology. First, there is no

guarantee of a unique equilibrium state. In fact, it seems quite probable that

multiple equilibria exist. The main reason for this is that the utility function is not
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convex Wlth respect to the volumes. It may be noted that static stochastic
equilibration problems formulated in terms of link flows do have unique equilibria,
due to the facts that the formulation is in terms of link flows and that the trip
times are convex with respect to the link flows in the static case (see Sheffi, 1985.
pp. 318-322). However, the present problem is in a dynamic setting with utilities
that are not convex with respect to the route traffic demands and are undefined
with respect to the link traffic flows. In addition to this, the enroute driver route-
switch decisions affect the ‘smoothness’ of the ‘utility space’ resulting from the
demands, meaning that the utilities from two almost-identical departure patterns
could be quite different, thus causing added non-convexity to the proglerrh.r W

Due to the possible existence of multiple equilibria, the method of
successive averages is only a way of ‘forcing’ the system to converge to one of
the equilibrium states. If instead of using a smoothing procedure, a behavioral rule
is used for the day-to-day decisions and adjustments of route and departure times
by the drivers, we could get traffic volumes from iteration to iteration that show
the actual states that a system may go through under information, while
equilibrating. This would be similar to the case studied by Mahmassani and Chang
(1986) under boundedly-rational user equilibrium conditions and the stochastic
demand adjustment mechanism (though it is based on MSA and some relatively
simple leaming rules) studied by Vythoulkas (1990), both for day-to-day
adjustments of driver decisions in networks without information. In future, when
data becomes available on such driver behavior (mainly of learning) under
information, it will be possible to study the systems evolution towards
convergence. It may also be noted that networks need not have unique dynamic

equilibrium states in reality either. In fact, some researchers believe this is the
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case and have proposed dynamic user equilibrium under external control (Ran and
Shimazald, 1990). In view of these aspects, it can be seen that the methodology
hereis to find a poésiblc equilibrium state and to derive insights from that.

It may also be noted that the methodology remains unchanged in the case
of reequilibration from one equilibrium state, except that the iterations start with
the utilities at first equilibration instead of the utilities based on free-flow speeds.
This is used to study the effect of information on a network that is in equilibrium
without any information supply. The first equilibrium can be found using the
above methodology, and the next equilibration is carried out starting from the
eciuilibridm' depiartﬁré'pattwcrh from the firstequ?hbnum. but with a fraction of the
drivers making route decisions enroute using information. The implication here is
that the equilibrium reached is a function of the initial starting conditions, only in
which case these reequilibration studies are sensible. Different equilibrium states
do indeed result on reequilibration as the studies show. This raises interesting
issues on the stability of networks with equilibriam under information, which are

not studied in detail here. A discussion of the results follow in the next section.

53. RESULTS

The main results from the iterative equilibration runs are shown in tables
5.1 through 5.4. Table 5.1 shows the results of equilibration of the network with
no information supply, with three assumed utility functions. Utility function Ul
is the function calibrated by Hendrickson et al (1984) and described in equation
5.4, Utility functions U2 and U3 are two modified utility functions with the
absolute value of the coefficient of SDE (Early-side Schedule delay) increased to
0.00063 and 0.00084 respectively from the 0.00042 value of Ul.



II Iterations Original Utility Modified Utility
Function (U1) Function (U2) Function {U3)
" 0 42673 47106 48710
1 -6136.6 6928.2 -7349.7
2 -6045.7 7045.0 -7852.4
3 -6058.1 -7019.3 -7853.8 "
4 -6072.4 -7009.4 -7881.1 |
5 -6076.9 70164 80952 l|
H 6 6077.3 -7020.8 -8133.8
II 7 -6077.1 -7025.6 -8091.8
8 -6077.3 -7030.1 -8148.1
{ 9 0317 8083.1
10 70313 -8042.6
11 -7032.0 -8152.7 f
12 70312 81319 g
13 70323 -8156.7
14 -7031.3 -8172.3
15 -7032.3 -8136.6
16 -7031.3 -8152.9
17 70323 -8144.7
18 270313 -8144.8
Avg Trip time 10.01 min 10.67 min 12.08 min
Avg. Schedule 22.51 min 19.11 min 16.81 min
delay (early)
Avg. Schedule 0.49 min 0.72 min 1.12 min
_ delay (late)

Table 5.1

values of schedule delay and trip time at equilibrium,

Variation of system utility during equilibration and the average



IB = 0.0, IB = 0.0 IB =02 IB =0.2
INF=05 | INF=1.0 | INF=0.5 | INF=1.0
| Total system utility

at reequilibration -5919.6 -6052.7 -5881.7 -5883.3
under information
Equilibrium Avg 9.66 9.38 9.58 8.91
Trip time (Overall) '

» (group with 9.50 9.88 9.40 891 |
info)

» (group without 0.82 -- 9.78 -
info)
Equilibrium Avg
Earlyside Schedule 22.35 . 22.29 22.24 22.25
Delay (Overall)

» (group with 26.06 2594 0 | T 2552 | 2517
info and early)

.» (group without 25.71 - 25.91 -
info and carly)
Equilibriom Avg
lateside Schedule 0.47 0.52 0.48 0.48°
Delay (Overall) -

» {(group with 3.38 3.68 3.46 - 350
info and late) '

» {group without 3.55 - 3.59 -
info and late) _ “

Notes: All times are in minutes. IB = Average Indifference Threshold Fraction.
INF = Fraction of Drivers with Information. Total Equilibrium System
Utility at the start = -6077.3

Table 5.2. Reequilibration under information from a no-information equilibricm
state. Utility function : Ul (Original calibrated function. Coefficient of
SDE term = 0.00042)



INF = 0.5

Total system utility

at reequilibration -7592.8 -7618.0 -6799.6 -6807.7
{ under information

Equilibrium Avg 11.03 11.40 10.25 10.15
Trip time (Overall)

» (group with 11.04 11.40 9.97 10.15 H
info)

» (group without 11.02 -- 10.53 -
info) '
Equilibrium Avg B
Earlyside Schedule 19.57 19.39 18.67 18.69
Delay (Overall)

» (group with 24.36 23.63 22.86 22.52
info and early) _

» (group without 23.58 - 22.21 --
info and early) :
Equilibrium Avg 0.96 0.95 071 0.68 .
lateside Schedule
Delay (Overall)

» (group with 541 5.32 4.15 - 3.96
info and late)

f . (group without 499 - 4.17 -

info and late)

Notes: All times are in minutes. IB = Average Indifference Threshold Fraction.
INF = Fraction of Drivers with Information. Total Equilibrium System
Utility at the start = -7031.3

Table 5.3. Reequilibration under information from a no-information equilibrium

state. Utility function :

Coefficient of SDE term = 0.00063)

U2 (Modified from the calibrated function.



IB =0.0, IB =0.0 IB=02 IB=0.2
INF=05{ INF=10 | INF=05 | INF=1.0

Total system utility
at reequilibration -8754.0 -9212.0 -7728.2 -7955.3
under information
Equilibrium Avg 12.40 13.20 11.26 11.40
Trip time (Overall)

» (group with 12.64 13.20 11.03 11.40
info)

» (group without 12.15 - 11.49 -
info)
Equilibrium Avg N - ‘
Earlyside Schedule 17.48 17.65 16.90 17.02
Delay (Overall)
- i~ (group- with——-——22.69 22.81 21.12 21.10
info and early)

. (group without 21.23 - 20.81 -
info and early)
Equilibrium Avg 1.23 1.46 1093 1.05
lateside Schedule :
Delay (Overali) .

» (group with 6.15 6.46 491 5.44
info and late)

,» {(group without 593 -- 4.69 -
info and late)

Notes: All times are in minutes. IB = Average Indifference Threshold Fraction.
INF = Fraction of Drivers with Information. Total Equilibrium System
Utility at the start = -8147.4

Table 5.4. Reequilibration under information from a no-information equilibrium

state. Utility function : U3 (Modified from the calibrated function.
Coefficient of SDE term = 0.00084)
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Table 5.1 shows the sensitivity of the equilibration process to the
coefficient of the early-side schedule delay. This is an important variable in the
utility function in that it captures the trade-off between the trip time and the
schedule delay. A lower absolute value for this coefficient means that a departure
alternative that results in lower trip time but higher schedule delay is preferable
to the drver. This is clear from the results, as the average trip times at equilibrium
indeed increase when the coefficient is low. The fact that about 20 % increase in
trip time would be acceptable to the drivers when the absolute value of this
coefficient increases to 0.00084 from 0.00042, clearly shows the importance of
evaluating trip time improvements with information strategies with proper

accounting for the schedule delay increase that might accompany such

improvements. The results also point to the néccssity to undertake the empirical
research for calibrating accurate utility functions.

Tables 5.2 to 5.4 show the results of the network reequilibrating under
information, starting from equilibrium states (which are reached after the iterations
shown in table 5.1). In the case of all the three utility functions and both the
values of average indifference threshold fraction (IB = 0, for the _‘mfopic switching
and IB = 0.2, for the more conservative boundedly rational switching), we see that
the utility at reequilibration under information is better when a smaller fraction of
people are equipped for information. In line with some of the conclusions from
the corridor simulations reported in chapter 4, myopic switching (IB = 0) can be
seen to cause reequilibration to a worse total utility state, as compared to the
equilibrium without information.

The reason for the worsening of the total system utility function on

reequilibration is clearly the increase in early-side schedule delay and the decrease
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in the trip time. Note that the system utility is is lower even though th etrip times
are lower, due to the higher schedule delay. In most cases the increase in 'schcdule.
delay is rather small, but the resulting worsening of the utility is considerable.
This is a direct result of the form of the utility function, where the disutility
increases quadratically with respect to the early side schedule delay. This again,
points to the need for reliable utility functions. '

Another interesting observation is that the schedule delays are in general
higher for the drivers receiving information. This could be because these drivers
achieve lower trip times thanks to the information but end up in an equilibrium -
with Jower trip times (and worse utilities) as the mechanism here that causes
departure time adjustments that are in the descent direction of the disutility (name
ly the logit split that maximizes the random utility) may be acheiving a local
minimum. This may not be the case in reality, as the drivers could change
departure times according to different adjustment mechanisms (i.e., learning
behavior) and reach different equilibrium states. Of course, if they make
boundedly-rational departure choice adjustments (see Section 2.3.1) as opposed to
optimizing decisions, they may accept the lower utilities (see Maixmassani and
Jayakrishnan, 1988, for simulation results on similar trade-offs in the day-to-day -
adjustments of drivers in the context of road-closure perturbations), and reach a
‘worse’ equilibriurn state.

Due to the larger coefficients for the late-side schedule delay in the utility
function, the average schedule-delay on the late-side is quite small in magnitude
and as such does not seem to provide much meaningful insights with regard to the
trade-offs with trip time and early-side schedule delay. This aspect can be studied

by changing its coefficient in a sensible manner, which however is not attempted
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here. As the information supply does not increase the average trip times in general
(according to the results of chapter 4), the late-side schedule delay should anyway

not be expected to increase under information either.

54. CONCLUSIONS

This chapter examined the effects of information on the equilibration
characteristics of a specific network. It is interesting to find that based on a utility
function of the drivers that includes schedule delay also along with the trip time,
there are indeed cases where information causes the system to reach equilibrium
states with worse utility (lower trip times but higher 'earlincss;). This of course
depends on the utility function that is assumed. Further research is needed to

develop and calibrate realistic utility functions so that such analyses can be
performed to find the impacts of in-vehicle information systems, This aspect has
not been given enough emphasis in the cun'eﬁt plans for implementation of such
systems to gain maximum trip time advantages. Based on the results from this
chapter it appears essential that this issue is. addressed carefully in future.



Chapter 6
CONCLUSION

This chapter provides concluding remarks on the research effort reported
in this thesis. The chapter starts with a summary and discussion of the overall
conclusions in section 6.1; Section 6.2 discusses the author’s views on the various
aspects of the work that constitutes contributions to the state of the art. The last
section discusses the possible areas in which further modifications can be
incorporated to the simulation framework as well as the future research directions

~ related to this topic.

6.1. OVERALL CONCLUSIONS
Due to the nature of the simulation-based analysis, the conclusions derived
here are mostly qualitative. The results are based on a relatively few cases too.
Nonetheless, some of the insights developed may be generalizable and are
valuable. Only a few networks were studied, but they were carefully selected to
explore the applicability of the framework to evaluate realistically large traffic
networks under information and also to study the fundamental aspects of traffic
dynamics under information. As various information scenarios are studied on two
different types of networks, one with a speéific corridor structures and the other
with a general multiple-destination structure, the conclusions may be applicable
to a variety of network scenarios. At the same time, as may be expected in this
type of research where only a few representative cases are studied, some of the
results which are apparently conflicting may need to be correctly interpreted.

An important conclusion from the simulation studies is that information

200
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supply in traffic networks results in performance improvements that are not
necessarily directly proportional to the ‘level’ of information supply. For instance,
the overall network travel times appear to reduce sharply when only small
fractions of vehicles are equipped for information supply, but as the percentage
of the equipped vehicles increases, we get decreasing marginal reduction in the
system-level total trip times. It was found that only less than 50% (sometimes less
than 30 %) of the drivers need to be equipped to receive information, for the
system to achieve more than about 80 % of the advantages, This pattern is seen
in all of the simulations carried out, regardless of the waffic loading patterns or
the assumed levels of driver‘propenréi& to switch routes usmg the mfonnat]o:;._—__

even though the general network cases did not show as much of advantages with

low fraction of vehicles as the corridor cases (mostly due to the nature of the
route assignments of uninformed drivers, as discussed in Chapter 4).

The results do confirm that by and large the information supply does
provide benefits in terms of system-level trip times, This is intuitively appealing
and was . generally assumed to be the case when the demonstration and/or
implementation efforis on route guidance and information systems were initiated
around the world, but nevertheless was rarely confirmed with extensive realistic
analyses. The improvements in total system travel times are generally less than 10
percent in comparison with the case of no drivers being equipped for information.
“While this improvement may not appear to be very significant, it should be noted
that it is more than what can be achieved with any of the existing conventional
traffic engineering approaches in heavily conges@ networks, '

The next conclusion is about the effect of information on the two major

groups of drivers in a network: those who are equipped for information and those



202
who are not. The results show that, in general, the drivers without information are
not adversely affected by information supply to the c.Jthcr group of drivers. On the
contrary, they received benefits in all the cases simulated and in some cases even
obtained more benefits than those receiving information.

The observations regarding the impacts on the two groups of drivers (with
and without the equipment to receive route information) for various levels of
information supply are also meaningful. It is seen that in most cases, the average

trip time of the drivers without information increases with increasing fractions of

drivers with information. On the other hand, the average trip time benefits derived

by equipped drivers decrease as the fraction of equipped drivers increase.

Perhaps the most interesting and probably somewhat controversial

conclusion from these simulations is that there indeed could be cases where
supplying information can be detrimental to the system performance. This was
found in the simulations of the 3-highway corridor with 75 to 100 percent of the
drivers equipped and the drivers making myopic decisions in route switching
(always switching to the best path displayed). Of course, such worsening of
performance may not always occur, as observed from the limited cases simulated
for the general Austin network. The reason could be that corridor networks with
fewer facilities get congested easily due to over-reaction of the drivers while the
general networks offer more opportunities to disperse the traffic. While further
simulations are needed to confirm the definite reasons behind such a worsening
of performance, the fact that it did occur in some cases point to the necessity for
careful analysis when information systems are put in place.

The observations discussed in the above two paragraphs raise important

questions such as why only a certain fraction of drivers should pay for information



203
equipment while their effort is only helping the fraction of drivers who are not
paying anything. Such equity issues, coupled with the fact that most of the
systemwide benefits can be achieved with low market penetration raise interesting
challenges in designing cost-effective information supply strategies which are
socially acceptable and equitable. This is an important aspect which should be
addressed in connection with the current plans to implement such information
systems around the world. |

The network equilibration studies reported in chapter 5 add a new
dimension to the conclusions on the system performance under information,
" namely, the evolution of the system towards a (stochastic dynamic) user

equilibrium. When the utility function of the drivers includes a penalty for early -

or late arrivals at the work place, the performance of the system cannot be
correctly summarized or meaningfully evaluated with just the trip time statistics
because the schedule delays (early or late) associated with a particular departure
time are also of significance. Thus performance comparison on the basis of total
utilities is probably more reasonable.

We see that while the system equilibrates under information (or more
correctly, reequilibrates from an equilibrium under no information) resulting in
better trip times for higher switching propensity of the drivers, the total system
utilities are lower. This is due to the higher schedule delays associated with such
lower trip times. Again, we see that conservative route-switching with an
indifference threshold (towards minimal advantages) provides the best system
performance in terms of utility, at equilibrium. Of course, further simulations with
more appropriate utility functions (which may be calibrated specifically. for

systems under information) are necessary for arriving at more general conclusions.
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6.2. RESEARCH CONTRIBUTIONS

The resecarch undertaken here is among the first, to the author’s

knowledge, that incorporates the three essential elements that influence the
dynamics of urban traffic networks under information, namely (1) the traffic flow
dynamics, (2} the driver route-selection behavior and (3) the dynamic variation of
path characteristics under information supply. The most significant contribution
of the research is the development of a comprehensive modelling framework that
- integrates the components that model these three dynamic elements. In the past,

the complexity of the interplay among these elements and the computational
requirements in tying them iogcthcr into a ﬁodeﬁing systcm that can be ;ipp]ied o

to large-scale networks have prevented the development of such tools.

The utility of the simulation framework is two-fold. First, the framework
is capable of modelling relatively large networks under information supply, and
can be used to design or evaluate alternative information strategies before their
implementation on existing city networks. This would help in limiting the need for
large-scale real-world experimentation which may be prohibitively expensive.
Second, the simulation framework could conceivably be a part of a real-time rouse
guidance/information system, where the information supply strategy is determined
by real-time simulation (or, quasi real-time simulation with stored scenarios), The
framework, with a few enhancements, is applicable for the former purpose while
its use for the latter purpose requires development of detailed interfacing
capabilities depending on the particular real-time system in which it is used. In
either case, the framework can be expected to be reasonably helpful in
performance prediction.

Another contribution is the highlighting of a significant determinant of the
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performance of information-driven networks, namely the driver behavior that is
sometimes equivalent to non-compliance with the information provided. The
interesting results under various levels of route-switching propensity show the
need for considering this aspect \_.vhile evaluating information systems. It is notable
that the actval levels of switching propensity will depend on the particular network
context, but the results from simulations using this framework can be used to
decide what kind of route-switching propensity is ‘best’ for a particular network
case. Such insights may even be used for driver education regarding switching
behavior that contributes towards user or system optimality. One of the strong

“conclusions from this research is that such driver behavior of not switching to an

alternative route which the information system displays as advantageous, must be

included in any evaluative modelling framework: one aspect that has hardly been
considered in the past.

The development of a framework that is adaptable to future improvements
in the state of the art in this area is also a contribution of the research. The
framework has a modular structure so that better models for driver behavior, initial
path selection, traffic flow dynamics etc can be incorporated 'to it with minimal
effort. This is in fact one of the reasons why this framework is being strongly
considered as a major component of a significant research effort that the Federal
Highway Administration has initiated at the University of Texas dealing with
optimal route guidance in urban traffic networks.

This framework is among the first in the area of large-scale traffic
network modelling that utilizes a K-shortest path approach which, as explained in
Chapter 2, has a number of merits than the conventional shortest path modelling.
This is an important component of the framework that lends it the fiexibility for
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-adaptation to the future advances in driver behavior and route guidance strategies.
The K-shortest path routine is efficiently written and uses efficient data structures
such as binary heaps, so that the simulations can be done with reasonable
computational effort, even with a relatively large number of paths between each
origin and destination in the network, This would prove very useful in future
studies of infon:nation strategies such as, for instance, routing to suboptimal paths
and driver selection from choice sets with multiple alternative routes.

The next contribution is that the research developed a modelling
framework that efficiently utilizes the recent computational advances, specifically
the supéi'cbr"ﬁpﬁ'ﬁhg“ capabilities. Paﬂ'n-prdcf:iefsﬁiig?;?h; most computationally
. demanding component of the framework. The heap-based K-shortest path, while
it is not very efficient in vectorization, is developed in a manner that is suitable
for multitasking. Efficient routines have been developed for the aggregation of link
trip times to route trip times. Separate routines, sequential and vectorizable, have
been developed for this routine so that the framework can be efficienty
implemented on either computational environment.

' Several new substantive insights have been attained from the simulation
studies providing an intuitive understanding of the dynamics of information-driven
networks. This will be valuable in the future development of simulation
experiments as well as field studies to develop calibrated models of component

phenomena for incorporation into the framework.

6.3. FUTURE RESEARCH
Modelling of traffic networks under information is a rapidly emerging

area. Considering the demonstration and implementation efforts envisaged now,
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and the associated fundamental research efforts initiated in the various rclated
areas, the state of the art is expected to improve dramatically in the near future.
A discussion that places the research reported here in the context of such
developments is warranted along with pointers .to the kind of research that is
important,

Development and calibration of behavioral models of driver response to
information is of primary significance, because it is among the most important
determinants of the performance of information-driven networks. For-such models
to be incorporated into this simulation framework in a useful manner, they may
have to be disaggreagate (individual-level) in nature, Models have to be developed
and calibrated in two broad areas: 1) the pre-trip decisions and 2) the en-route

dccisions.

_ It has been found in recent research (Mahmassani and Chen, 1991) that
pre-trip decisions may play a very significant part in determining the system
performance. In this research itself, the lack of a realistic pre-trip- decision
component may have caused shortcomings, especially in the selection of
reasonable initial departure patterns and the simulation of realistic base-cases with
no enroute information supply. For instance in the Austin network simulations, the
reason that myopic enroute switching behavior produced the best system results
may be hypothesized to be the lack of a better assignment of the initial paths of
the drivers (which may have caused it to be always better to have an initial
change of routes for some significant benefits).

Development of such models of pre-trip route selection is even more
important in the context of the dynamic day-to-day evolution of the traffic systems

under information as they provide a means of carrying out iterative simulations
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to model realistic medium or long-term equilibrium (if they indeed exist) in traffic
networks. A few aspects of importance in such models would be, 1) the nature and
availability of pre-trip information, 2) the driver knowledge about the average
conditions on the routes in the network, 3) the relative usefulness of the
information, in terms of switching opportunitics, on each route and 4) the
reliability of the information supply.

In the case of enroute decisions, alternative forms of route switching
and/or selection miodels need to be developed. The possible aspects of driver
behavior which have to be studied are, 1) enroute habit formation (such as liking
theif current route) by the drivers, 2) imaptient behavior when their personal goals

regarding acceptable values of various route attributes are not met (especially

when route-switch opportunities are rare) and 3) perception of the reliability of the
enroute information supply.

There are two possible dpproaches for collecting the data required to
develop such behavioral models: 1) in the ﬁeidl, by means of recording the driver
decisions and the associated circumstances, or 2) simulation-based laboratory
experiments, with real people making driver decisions in simulated traffic systems.
The field data collection method could be much more expensive than the
laboratory approach, as the information supply system has to be in place and the
data requirements for statistically calibrating any kind of reasonable model would
require equipping a large number of drivers with on-board display systems.
Furthermore, it may be impossible to study alternative guidance strategies (such
as displaying more paths than the best, for example) without extensive hardware
restructuring. On the other hand, in a laboratory setting, which would be

considerably less expensive and more flexible in studying alternative scenarios, the
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drivers could be behave in a ‘relaxed’ manner without the pressures 6f real-life
driving, resulting in relatively less reliable models.

On the traffic simulation side, one possible improvement may be the
development of codes for parallel computing environments, As Connection
Machines with thousands of processors are now available, the traffic movement
in all the network links may be carried out in a simultaneous manner by assigning
one processor for simulating each link. Alternatively, one processor may be
assigned to each vehicle in the network. The first method would require fewer
processors but would involve more inter-processor communication than the other.
Extensive rewriting of the code and possible change of the programming language
from FORTRAN to C may be necessary to achieve such parallelization.

One current deficiency in the framework is that the vehicle delays at
intersections and interchanges are not modelled in detail. Additional modules may
have to be added to model pre-timed and/or actuated signals as well as simple
stop control at the network intersections. Research is ali'eady underway at the
University of Texas and at the University of California, Irvine for incorporating
such intersection modelling capabilities into this framework.

From the information supply perspective, the framework at present does
not model the dispiay of route information based on predicted travel times, For the
existing and planned network information systems around the world, this
component is only under development. When such travel time prediction models
become .available, they will have to be incorporated to the framework, for it to be
able to model an entirely new array of information supply strategies.

One possible approach at this point is to perform the vehicle movement

in each simulation time step based on simulations over a specified period in the
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immediate future which provides link trip time profiles into the future. This would
require a modification in the route trip time aggregation routine to add up trip.
times dynamically (selecting appropriate value from the link trip time profiles).
Another possibility is to approach this problem from a probabilistic point of view
with variables capturing route switching probabilities. The profile of the turning

‘probabilities at each node in the past can be extrapolated into the future to
calculate the link concentrations and the resulting trip times in the future. Both of
these apj:roachcs could prove to be rather involved and many additional details of
dynamic prediction of travel times will have to be carefully addressed.

As the developments related to traffic network information/guidance
systems are still in the arly stages, many areas of future reserach can be identified.

There are many avenues of exciting, innovative and challenging research in
modelling and analyzing networks under information. The brief account above is
not meant to be exhaustive, but itis hoped that it is useful. In the same vein, the
entire research effort reported in this thesis is not expected to be the final one on
this topic, but rather an carnest beginning at developing a useful tool to study a

relatively complex system of profound significance to the quality urban life.





